Abstract
Methane is an important component of the biogeochemical cycle of carbon with potentially critical roles in both atmospheric chemical and radiation transfer processes1–4. Limited evidence is available which suggests an increase in global tropospheric methane during the last decade5,6. To understand and assess the possibility and implications of temporal variations in atmospheric methane requires improved quantitative knowledge of methane sources and sinks. We report here methane flux measurements made over a 17-month period in the Great Dismal Swamp, Virginia. These flux measurements indicate that Great Dismal Swamp soils can act as both a source and sink for atmospheric methane. In a waterlogged condition, swamp soils are a net source of methane to the atmosphere with seasonal variations in emission rates from <0.001 to 0.02 g CH4 m−2 day−1. During drought conditions, swamp soils consume atmospheric methane at rates of <0.001 to 0.005 g CH4 m−2 day−1. While these results should not be extrapolated to all swamp soils, they illustrate the potential complexity of processes which regulate net flux of methane between wetland soils and the atmosphere.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Carbon Dioxide Emissions and Methane Flux from Forested Wetland Soils of the Great Dismal Swamp, USA
Environmental Management Open Access 25 June 2019
-
Methane-generating ammonia oxidizing nitrifiers within bio-filters in aquaculture tanks
AMB Express Open Access 28 August 2018
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Crutzen, P. J. in Physics and Chemistry of Upper Atmospheres (ed. McCormac, B. M.) 110 (Reidel, New York, 1973).
Emhalt, D. H. & Schmidt, U. Pure appl. Geophys. 116, 452–464 (1978).
Wofsy, S. C. A. Rev. Earth planet. Sci. 4, 441–469 (1976).
Sze, N. D. Science 195, 673–674 (1977).
Gradel, T. E. & McRae, J. E. Geophys. Res. Lett. 7, 977–979 (1980).
Rasmussen, R. A. & Khalil, M. A. K. J. geophys. Res. 86, 9826–9832 (1981).
Koyama, T. J. geophys. Res. 68, 3971–3973 (1963).
Mah, R. A., Ward, D. M., Baresi, L. & Glass, T. L. A. Rev. Microbiol. 31, 309–340 (1977).
Zeikus, J. G. Bacter. Rev. 41, 514–541 (1977).
Atkinson, L. P. & Hall, J. R. Estuar. Coast. mar. Sci. 4, 677–686 (1976).
Martens, C. S. & Berner, R. A. Science 185, 1167–1169 (1974).
Swain, F. M. Adv. org. Geochem. 1, 673–687 (1973).
Baker-Blocker, A., Donahue, T. M. & Mancy, K. H. Tellus 29, 245–250 (1977).
Sebacher, D. I. & Harriss, R. C. J. envir. Qual. 11, 34–37 (1982).
Whitehead, D. R. Ecol. Monogr. 42, 301–315 (1972).
Carter, V., Garrett, M. K., Shima, L. & Gammon, P. Wat. Res. Bull. 13, 1–12 (1977).
Day, F. P. & Dabel, C. V. Vac. J. Sci. 29, 220–224 (1978).
Dabel, C. V. & Day, F. P. Bull. Torrey bot. Club 104, 352–360 (1977).
Day, F. P. Am. Mid. Nat. 102, 281–289 (1979).
Oosting, H. J. The Study of Plant Communities (Freeman, San Francisco, 1956).
Gosink, T. A. & Kelley, J. J. J. geophys. Res. 84, 7041 (1979).
Harriss, R. C. & Sebacher, D. I. Geophys. Res. Lett. 8, 1002–1004 (1981).
Cicerone, R. J. & Shetter, J. D. J. geophys. Res. 86, 7203–7209 (1981).
Harriss, R. C., Sebacher, D. I., Bartlett, K. D. & Bartlett, D. S. Proc. Sym. Comp. Nonurban Troposphere, (American Meteorological Society, in the press).
Dacey, J. W. H. & Klug, M. J. Science 203, 1253–1255 (1979).
Kelly, C. A. & Chynoweth, D. P. Limnol. Oceanogr. 26, 891–897 (1981).
Rudd, J. W. M. & Hamilton, R. D. Limnol. Oceanogr. 23, 337–348 (1978).
Sansone, F. J. & Martens, C. S. Limnol. Oceanogr. 23, 349–355 (1978).
Barber, L. E. & Ensign, J. C. Geomicrobial J. 1, 341–345 (1979).
Fallon, R. D., Harrits, S., Hanson, R. S. & Brock, T. D. Limnol. Oceanogr. 25, 357–360 (1980).
Harrits, S. M. & Hanson, R. S. Limnol. Oceanogr. 25, 412–421 (1980).
Whittenbury, R. H., Dalton, R. H., Eccleston, M. & Reed, H. L. in Proc. Congr. on Microbial Growth in C1 Compounds 1–9 (1974).
Ehhalt, D. H. & Heidt, L. E. J. geophys. Res. 18, 5265–5271 (1973).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Harriss, R., Sebacher, D. & Day, F. Methane flux in the Great Dismal Swamp. Nature 297, 673–674 (1982). https://doi.org/10.1038/297673a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/297673a0
This article is cited by
-
Short-term effect of COVID-19 lockdowns on atmospheric CO2, CH4 and PM2.5 concentrations in urban environment
International Journal of Environmental Science and Technology (2023)
-
Active methane processing microbes and the disproportionate role of NC10 phylum in methane mitigation in Amazonian floodplains
Biogeochemistry (2021)
-
Carbon Dioxide Emissions and Methane Flux from Forested Wetland Soils of the Great Dismal Swamp, USA
Environmental Management (2019)
-
Status of Methane Emission from Indian Wetlands (Saline vs. Freshwater): A Mini Review
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences (2019)
-
The Effect of Land-Use Change on Soil CH4 and N2O Fluxes: A Global Meta-Analysis
Ecosystems (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.