Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon cycle changes of the Zechstein Sea: isotopic transition zone in the Marl Slate

Abstract

The carbon isotope composition of carbonate rocks is one parameter used to study the carbon, sulphur and oxygen cycles through geological time1,2. The understanding of these interrelated cycles is important in quantitative flux modelling of sedimentary rocks. The carbon isotope composition in the large reservoir of dissolved carbonate in ocean water is a result of mass balance between the amount of carbon in the reduced organic reservoir and the oxidized carbonate reservoir at any given stage. The reduced carbon reservoir preferentially sequesters 12C owing to biological fractionation processes. Any change in the removal ratio of oxidized/reduced carbon will be reflected by the change of the δ13C value of the oceanic carbonate system. Here we present a detailed study of the change in 13C which took place at the base of the Upper Permian Zechstein sequence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Garrels, R. M. & Perry, F. A. in The Sea Vol. 5 (ed. Goldberg, E. D.) 303–336 (Wiley, New York, 1975).

    Google Scholar 

  2. Mackenzie, F. T. & Pigott, J. D. J. geol Soc. Lond. 138, 183–196 (1981).

    Article  CAS  Google Scholar 

  3. Schidlowski, M., Junge, C. E. & Pietrek, H. J. geophys. Res. 82, 2557–2565 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Jeffery, P. M., Compston, W., Greenhalch, D. & Debacter, Y. Geochim. cosmochim Acta 7, 255–286 (1955).

    Article  ADS  CAS  Google Scholar 

  5. Weber, J. Geochem. cosmochim Acta 31, 2343–2351 (1967).

    Article  ADS  CAS  Google Scholar 

  6. Shackleton, N. J. in The Fate of Fossil Fuel CO2 in the Ocean (eds Anderson, N. R. & Malahoff, A.) 543–563 (Plenum, New York, 1977).

    Google Scholar 

  7. Fischer, A. G. & Arthur, M. A. SEPM. Spec. Publ. 25, 19–50 (1977).

    Google Scholar 

  8. Boersma, A. & Shackleton, N. J. Cretaceous–Tertiary Boundary Event Symp. 2, 40–54 (1979).

    Google Scholar 

  9. Scholle, P. A. & Arthur, M. A. Bull. geol. Soc. Am. 64, 67–87 (1980).

    CAS  Google Scholar 

  10. Kroopnick, P. M., Margolis, S. V. & Wang, C. S. in The Fate of Fossil Fuel CO2 in the Ocean (eds Anderson, N. R. & Malahoff, A.) 295–321 (Plenum, New York, 1977).

    Book  Google Scholar 

  11. Jenkyns, H. C. J. geol. Soc. Lond. 137, 171–181 (1980).

    Article  Google Scholar 

  12. Veizer, J., Holser, W. T. & Wilgus, C. K. Geochim. cosmochim Acta 44, 579–588 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Magaritz, M., Turner, P. & Kading, K-Ch. Geol. J. 16, 243–254 (1981).

    Article  CAS  Google Scholar 

  14. Magaritz, M. & Schulze, K.-H. Cont. Sedim. 9, 269–277 (1980).

    Google Scholar 

  15. Ponov, A. B. Geokimiya 8, 1252–1277 (1976).

    Google Scholar 

  16. Compston, W. Geochim. cosmochim. Acta 18, 1–22 (1960).

    Article  ADS  Google Scholar 

  17. Dean, W. E., Davies, G. R. & Anderson, R. Y. Geology 3, 367–372 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Osaki, S. Geochim. J., 6, 463–477 (1973).

    Google Scholar 

  19. Botz, R. thesis, Univ. Heidelberg (1979).

  20. Thode, H. G., Monster, J. & Dunford, H. B. Bull. Am. Ass. petrol. Geol. 42, 2619–2641 (1958).

    CAS  Google Scholar 

  21. Smith, D. B. J. geol. Soc. Lond. 136, 155–156 (1979).

    Article  ADS  Google Scholar 

  22. Smith, D. B. Contr. Sedim. 9, (1980).

  23. Oelsner, O. Freiberg. Forsch. C. 58, 106–113 (1959).

    Google Scholar 

  24. Brongersma-Sanders, M. Mar. Geol. 11, 123–144 (1971).

    Article  ADS  Google Scholar 

  25. Arthur, M. A. & Natland, J. H. in Results of Deep Drilling in the Atlantic Ocean Vol. 3, 375–401 (U.S. Govt. Printing Office, Washington DC, 1979).

    Google Scholar 

  26. Ryan, W. B. F. & Cita, M. B. Mar. Geol. 23, 197–215 (1977).

    Article  ADS  CAS  Google Scholar 

  27. Broecker, W. S. in International Conference on Evolution of Planetary Atmospheres and Climatology of the Earth, 165–190 (Cent. Nat. Etud. Spat. (France), 1978).

    Google Scholar 

  28. Holser, W. T. & Kaplan, I. R. Chem. Geol. 1, 93–135 (1966).

    Article  ADS  CAS  Google Scholar 

  29. Wilgus, C. K. thesis, Univ. Oregon, (1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magaritz, M., Turner, P. Carbon cycle changes of the Zechstein Sea: isotopic transition zone in the Marl Slate. Nature 297, 389–390 (1982). https://doi.org/10.1038/297389a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297389a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing