Experimental evidence for microscopic chaos


Many macroscopic dynamical phenomena, for example in hydrodynamics and oscillatory chemical reactions, have been observed to display erratic or random time evolution, in spite of the deterministic character of their dynamics—a phenomenon known as macroscopic chaos1,2,3,4,5. On the other hand, it has been long supposed that the existence of chaotic behaviour in the microscopic motions of atoms and molecules in fluids or solids is responsible for their equilibrium and non-equilibrium properties. But this hypothesis of microscopic chaos has never been verified experimentally. Chaotic behaviour of a system is characterized by the existence of positive Lyapunov exponents, which determine the rate of exponential separation of very close trajectories in the phase space of the system6. Positive Lyapunov exponents indicate that the microscopic dynamics of the system are very sensitive to its initial state, which, in turn, indicates that the dynamics are chaotic; a small change in initial conditions will lead to a large change in the microscopic motion. Here we report direct experimental evidence for microscopic chaos in fluid systems, obtained by the observation of brownian motion of a colloidal particle suspended in water. We find a positive lower bound on the sum of positive Lyapunov exponents of the system composed of the brownian particle and the surrounding fluid.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Dynamical instability in a Lorentz gas.
Figure 2: Brownian trajectory and power spectrum.
Figure 3: The mean pattern entropy as a function of time.
Figure 4: The entropy per unit time as a function of resolution.


  1. 1

    Eckmann, J.-P., Oliffson Kamphorst, S., Ruelle, D. & Ciliberto, S. Liapunov exponents from time series. Phys. Rev. A 34, 4971–4979 (1986).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. 2

    Roux, J.-C., Simoyi, R. H. & Swinney, H. L. Observation of a strange attractor. Physica D 8, 257–266 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Wisdom, J., Peale, S. J. & Mignard, F. The chaotic rotation of Hyperion. Icarus 58, 137–152 (1984).

    ADS  Article  Google Scholar 

  4. 4

    Klavetter, J. J. Rotation of Hyperion. I. Observations. Astron. J. 97, 570–579 (1989).

    ADS  Article  Google Scholar 

  5. 5

    Laskar, J. Anumerical experiment on the chaotic behaviour of the Solar System. Nature 338, 237–238 (1989).

    ADS  Article  Google Scholar 

  6. 6

    Eckmann, J.-P. & Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  7. 7

    Livi, R., Politi, A. & Ruffo, S. Distribution of characteristic exponents in the thermodynamic limit. J.Phys. A 19, 2033–2040 (1986).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8

    Posch, H. A. & Hoover, W. G. Lyapunov instability of dense Lennard-Jones fluids. Phys. Rev. A 38, 473–482 (1988); Equilibrium and nonequilibrium Lyapunov spectra for dense fluids and solids. Phys. Rev. A 39, 2175–2188 (1989).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Dellago, Ch., Posch, H. A. & Hoover, W. G. Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states. Phys. Rev. E 53, 1485–1501 (1996).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Gaspard, P. Chaos, Scattering Theory, and Statistical Mechanics (Cambridge Univ. Press, (1998)).

  11. 11

    Krylov, N. Relaxation processes in statistical systems. Nature 153, 709–710 (1944).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  12. 12

    Bunimovich, L. A. & Sinai, Ya. G. Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78, 479–497 (1981).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13

    Evans, D. J., Cohen, E. G. D. & Morriss, G. P. Viscosity of a simple fluid from its maximal Lyapunov exponents. Phys. Rev. A 42, 5990–5997 (1990).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Gaspard, P. & Nicolis, G. Transport properties, Lyapunov exponents, and entropy per unit time. Phys. Rev. Lett. 65, 1693–1696 (1990).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  15. 15

    Dorfman, J. R. & Gaspard, P. Chaotic scattering theory of transport and reaction-rate coefficients. Phys. Rev. E 51, 28–35 (1995).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  16. 16

    Ruelle, D. Positivity of entropy production in nonequilbirium statistical mechanics. J. Stat. Phys. 85, 1–23 (1996).

    ADS  Article  Google Scholar 

  17. 17

    Chernov, N. I., Eyink, G. L., Lebowitz, J. L. & Sinai, Ya. G. Derivation of Ohm's law in a deterministic mechanical model. Phys. Rev. Lett. 70, 2209–2212 (1993).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Gallavotti, G. & Cohen, E. G. D. Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995); Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Gaspard, P. Can we observe microscopic chaos in the laboratory? Adv. Chem. Phys. XCIX, 369–392 (1997).

    Google Scholar 

  20. 20

    Gaspard, P. & Wang, X.-J. Noise, chaos, and (ε, τ)-entropy per unit time. Phys. Rep. 235, 291–345 (1993).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21

    Chaitin, G. J. Algorithm Information Theory (Cambridge Univ. Press, (1987)).

  22. 22

    Kolmogorov, A. N. Combinatorial foundations of information theory and the calculus of probabilities. Russ. Math. Survey 38, 29–40 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23

    Grassberger, P. & Procaccia, I. Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983).

    ADS  Article  Google Scholar 

  24. 24

    Cohen, A. & Procaccia, I. Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems. Phys. Rev. A 31, 1872–1882 (1985).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Ott, E. Chaos in Dynamical Systems (Cambridge Univ. Press, (1993)).

  26. 26

    Kolmogorov, A. N. On the Shannon theory of information transmission in the case of continuous signals. IRE Trans. Information Theory IT-2, 102–108 (1956).

    Article  Google Scholar 

  27. 27

    Berger, T. Information rates of Wiener processes. IEEE Trans. Information Theory IT-16, 134–139 (1970).

    MathSciNet  Article  Google Scholar 

  28. 28

    Tél, T., Gaspard, P. & Nicolis, G. (eds) Chaos 8, (Focus Issue on Chaos and Irreversibility) (1998).

  29. 29

    van Beijeren, H. Transport properties of stochastic Lorentz models. Rev. Mod. Phys. 54, 195–234 (1982).

    ADS  MathSciNet  Article  Google Scholar 

  30. 30

    Grier, D. G. & Murray, C. A. in Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution (eds Chen, S. H., Huang, J. S. & Tartaglia, P.) 145 (NATO ASI Ser. C, 369, Kluwer, Boston, (1991)).

  31. 31

    Schaertl, W. & Sillescu, H. Dynamics of colloidal hard spheres in thin aqueous suspension layers. J.Colloid Interface Sci. 155, 313–318 (1993).

    ADS  CAS  Article  Google Scholar 

Download references


P.G. was supported by the National Fund for Scientific Research (FNRS Belgium); J.R.D. thanks T. Gilbert for helpful remarks, and the US NSF for support; M.E.B. thanks the Physics Department at the University of Utah for support. This work was supported in part by the IUAP/PAI program of the Belgium Government and by the Banque Nationale de Belgique.

Author information



Corresponding author

Correspondence to P. Gaspard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gaspard, P., Briggs, M., Francis, M. et al. Experimental evidence for microscopic chaos. Nature 394, 865–868 (1998). https://doi.org/10.1038/29721

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing