Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dopamine modulates a Ca2+-activated potassium conductance in mammalian hippocampal pyramidal cells

Abstract

Dopamine (DA) is a neurotransmitter in the mammalian central nervous system which has proven or potential importance in such neurological disorders as parkinsonism, Huntington's chorea and epilepsy. Most of the electrophysiological data concerning the actions of DA in the brain have been obtained from studies in the caudate nucleus where DA produces neuronal depolarization and increased spike discharge1, slow depolarization with decreased spike discharge2,3 and an increase in apparent input resistance3 and hyperpolarization with reduced firing rate3. The mechanisms underlying these effects have not been examined. The evidence suggests that the hippocampus receives a dopaminergic projection4–6 and that DA inhibits most hippocampal neurones7,8. We have studied the effects of DA on CA1 hippocampal pyramidal cells (HPCs) in vitro and report here that DA causes prolonged inhibition associated with hyperpolarization and increased conductance. These effects seem to derive from induction of a Ca2+-activated K+ conductance, and would make DA effective in modulating the high frequency firing and burst generation which occurs normally in some neurones9,10, and pathologically in HPCs during epileptogenesis11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kitai, S. T., Sugimori, M. & Kocsis, J. D. Expl Brain Res. 24, 351–363 (1976).

    CAS  Google Scholar 

  2. Bernardi, G., Marciani, M. G., Morcutti, C., Pavone, F. & Stanzione, P. Neurosci. Lett. 8, 235–240 (1978).

    Article  CAS  Google Scholar 

  3. Herrling, P. L. & Hull, C. D. Brain Res. 192, 441–462 (1980).

    Article  CAS  Google Scholar 

  4. Swanson, L. W. & Hartman, B. K. J. comp. Neurol. 163, 467–505 (1975).

    Article  CAS  Google Scholar 

  5. Bischoff, S., Scatton, B. & Korf, J. Brain Res. 165, 161–165 (1979).

    Article  CAS  Google Scholar 

  6. Scatton, B., Simon, H., Le Moal, M. & Bischoff, S. Neurosci. Lett. 18, 125–131 (1980).

    Article  CAS  Google Scholar 

  7. Biscoe, T. J. & Straughan, B. J. Physiol., Lond. 183, 341–359 (1966).

    Article  CAS  Google Scholar 

  8. Herrling, P. L. Brain Res. 212, 331–343 (1981).

    Article  CAS  Google Scholar 

  9. Kandel, E. R. & Spencer, W. A. J. Neurophysiol. 24, 243–259 (1961).

    Article  CAS  Google Scholar 

  10. Wong, R. K. S. & Prince, D. A. Brain Res. 159, 385–390 (1978).

    Article  CAS  Google Scholar 

  11. Schwartzkroin, P. A. & Prince, D. A. Ann. Neurol 1, 463–469 (1977).

    Article  CAS  Google Scholar 

  12. Schwartzkroin, P. A. Brain Res. 128, 53–68 (1975).

    Article  Google Scholar 

  13. Benardo, L. S. & Prince, D. A. Brain Res. 211, 227–234 (1981).

    Article  CAS  Google Scholar 

  14. Hotson, J. R. & Prince, D. A. J. Neurophysiol. 43, 409–419 (1980).

    Article  CAS  Google Scholar 

  15. Alger, B. E. & Nicoll, R. A. Science 210, 1122–1124 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Anderson, P., Dingledine, R., Gjerstad, L., Langmoen, I. A. & Mosfeldt Laursen, A. J. Physiol., Lond. 305, 279–296 (1980).

    Article  Google Scholar 

  17. Krnjevic, K. Physiol. Rev. 54, 419–540 (1974).

    Article  Google Scholar 

  18. Alger, B. E. & Nicoll, R. A. Nature 281, 315–317 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Segal, M. Brain Res. 206, 107–128 (1981).

    Article  CAS  Google Scholar 

  20. Godfraind, J. M., Kawamura, H., Krnjevic, K. & Pumain, R. J. Physiol., Lond. 215, 199–222 (1971).

    Article  CAS  Google Scholar 

  21. Ginsborg, B. L., House, C. R. & Mitchell, M. R. J. Physiol., Lond. 303, 325–335 (1980).

    Article  CAS  Google Scholar 

  22. Hotson, J. R., Prince, D. A. & Schwartzkroin, P. A. J. Neurophysiol. 42, 889–895 (1979).

    Article  CAS  Google Scholar 

  23. Gelles, J. M. & Aronson, R. S. Circulation Res. 40, 561–566 (1977).

    Article  CAS  Google Scholar 

  24. Schwartzkroin, P. A. & Prince, D. A. Brain Res. 147, 117–130 (1978).

    Article  CAS  Google Scholar 

  25. Swanson, L. W. in Functions of the Septohippocampal System, 25–48 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  26. Benardo, L. S. & Prince, D. A. J. Neurosci. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benardo, L., Prince, D. Dopamine modulates a Ca2+-activated potassium conductance in mammalian hippocampal pyramidal cells. Nature 297, 76–79 (1982). https://doi.org/10.1038/297076a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297076a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing