Letter | Published:

Signal processing times in bacterial chemotaxis

Nature volume 296, pages 855857 (29 April 1982) | Download Citation

Subjects

Abstract

The bacterium Escherichia coli responds to changes in the concentrations of various chemicals in its environment1. A cell swims along a smooth trajectory (runs), moves erratically for a brief time (tumbles) and then runs again, choosing a new direction at random2. If a run happens to carry the cell up a gradient of an attractant (such as aspartate, serine and certain sugars), the occupancy of the appropriate chemoreceptor increases with time3,4 and a signal is sent to the flagellar motors that increases their counterclockwise bias5. On the average, this extends favourable runs and the cell moves up the gradient. The receptors for aspartate and serine6–8 are proteins found in the cytoplasmic membrane, known as methyl-accepting chemotaxis proteins9,10, and are the products of the tar and tsr genes11. A cell can adapt to sustained changes of receptor occupancy by carboxymethylating these proteins12; it is not known, however, how these proteins signal the flagellar motors or how the signal controls the direction of flagellar rotation. Products of several che genes involved in signalling and adaptation have been identified13,14, but with the exception of a methyltransferase15 (the cheR product) and a demethylase16 (the cheB product), their functions are largely unknown. In an attempt to learn more about the events that trigger a chemotactic response, we have now exposed cells to rapid changes in the concentration of attractants and repellents and measured the time required for flagellar reversal. In wild-type cells and in cells containing a cheRcheB deletion, the response latency is 0.2 s. In cheZ mutants, it is much longer.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Science 166, 1588–1597 (1969).

  2. 2.

    & Nature 239, 500–504 (1972).

  3. 3.

    & Proc. natn. Acad. Sci. U.S.A. 69, 2509–2512 (1972).

  4. 4.

    & Proc. natn. Acad. Sci. U.S.A. 71, 1388–1392 (1974).

  5. 5.

    , , , & Nature 249, 74–77 (1974).

  6. 6.

    & J. biol. Chem. 254, 9695–9702 (1979).

  7. 7.

    & J. Bact. 144, 1048–1060 (1980).

  8. 8.

    & Proc. natn. Acad. Sci. U.S.A. 77, 7157–7161 (1980).

  9. 9.

    , , & Proc. natn. Acad. Sci. U.S.A. 72, 3939–3943 (1975).

  10. 10.

    , & Proc. natn. Acad. Sci. U.S.A. 74, 3312–3316 (1977).

  11. 11.

    & Proc. natn. Acad. Sci. U.S.A. 74, 3317–3321 (1977).

  12. 12.

    , & Nature 280, 279–284 (1979).

  13. 13.

    A. Rev. Genet. 11, 397–414 (1977).

  14. 14.

    & A. Rev. Microbiol. 31, 397–419 (1977).

  15. 15.

    & Proc. natn. Acad. Sci. U.S.A. 74, 533–537 (1977).

  16. 16.

    & Proc. natn. Acad. Sci. U.S.A. 75, 3659–3663 (1978).

  17. 17.

    & Nature 249, 73–74 (1974).

  18. 18.

    , & Rev. scient. Instrum. 48, 407–410 (1977).

  19. 19.

    , & Symp. Soc. exp. Biol. 35, 1–31 (1981).

  20. 20.

    & Proc. natn. Acad. Sci. U.S.A. 72, 3235–3239 (1975).

  21. 21.

    & Proc. natn. Acad. Sci. U.S.A. 72, 710–713 (1975).

  22. 22.

    The Mathematics of Diffusion, 2nd edn (Clarendon, Oxford, 1975).

  23. 23.

    J. Neurosci. Meth. 1, 165–178 (1979).

  24. 24.

    , , , & Science 201, 63–65 (1978).

  25. 25.

    Cold Spring Harb. Conf. Cell Proliferation 3, A47–A56 (1976).

  26. 26.

    & Proc. natn. Acad. Sci. U.S.A. 78, 6051–6055 (1981).

  27. 27.

    J. Bact. 135, 45–53 (1978).

  28. 28.

    Symp. Soc. gen. Microbiol. 31, 265–290 (1981).

  29. 29.

    & Nature 262, 467–471 (1976).

  30. 30.

    & Proc. natn. Acad. Sci. U.S.A. 76, 2390–2394 (1979).

  31. 31.

    & Biophys. J. 20, 193–219 (1977).

  32. 32.

    & Pflügers Arch. ges. Physiol. 348, 263–272 (1974).

  33. 33.

    & Analyt. Chem. 31, 243–248 (1959).

  34. 34.

    , , & Proc. IEEE 56, 1072–1082 (1968).

Download references

Author information

Author notes

    • Michael D. Manson

    Present address: Fakultät für Biologie, Universität Konstanz, D-7750 Konstanz 1, FRG.

Affiliations

  1. Division of Biology 216–76, California Institute of Technology, Pasadena, California 91125, USA

    • Jeffrey E. Segall
    • , Michael D. Manson
    •  & Howard C. Berg

Authors

  1. Search for Jeffrey E. Segall in:

  2. Search for Michael D. Manson in:

  3. Search for Howard C. Berg in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/296855a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.