Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Signal processing times in bacterial chemotaxis

Abstract

The bacterium Escherichia coli responds to changes in the concentrations of various chemicals in its environment1. A cell swims along a smooth trajectory (runs), moves erratically for a brief time (tumbles) and then runs again, choosing a new direction at random2. If a run happens to carry the cell up a gradient of an attractant (such as aspartate, serine and certain sugars), the occupancy of the appropriate chemoreceptor increases with time3,4 and a signal is sent to the flagellar motors that increases their counterclockwise bias5. On the average, this extends favourable runs and the cell moves up the gradient. The receptors for aspartate and serine6–8 are proteins found in the cytoplasmic membrane, known as methyl-accepting chemotaxis proteins9,10, and are the products of the tar and tsr genes11. A cell can adapt to sustained changes of receptor occupancy by carboxymethylating these proteins12; it is not known, however, how these proteins signal the flagellar motors or how the signal controls the direction of flagellar rotation. Products of several che genes involved in signalling and adaptation have been identified13,14, but with the exception of a methyltransferase15 (the cheR product) and a demethylase16 (the cheB product), their functions are largely unknown. In an attempt to learn more about the events that trigger a chemotactic response, we have now exposed cells to rapid changes in the concentration of attractants and repellents and measured the time required for flagellar reversal. In wild-type cells and in cells containing a cheRcheB deletion, the response latency is 0.2 s. In cheZ mutants, it is much longer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adler, J. Science 166, 1588–1597 (1969).

    Article  ADS  CAS  Google Scholar 

  2. Berg, H. C. & Brown, D. A. Nature 239, 500–504 (1972).

    Article  ADS  CAS  Google Scholar 

  3. Macnab, R. & Koshland, D. E. Jr Proc. natn. Acad. Sci. U.S.A. 69, 2509–2512 (1972).

    Article  ADS  CAS  Google Scholar 

  4. Brown, D. A. & Berg, H. C. Proc. natn. Acad. Sci. U.S.A. 71, 1388–1392 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W.-W. & Adler, J. Nature 249, 74–77 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Clarke, S. & Koshland, D. E. Jr J. biol. Chem. 254, 9695–9702 (1979).

    CAS  PubMed  Google Scholar 

  7. Hedblom, M. L. & Adler, J. J. Bact. 144, 1048–1060 (1980).

    Article  CAS  Google Scholar 

  8. Wang, E. A. & Koshland, D. E. Jr Proc. natn. Acad. Sci. U.S.A. 77, 7157–7161 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Kort, E. N., Goy, M. F., Larsen, S. H. & Adler, J. Proc. natn. Acad. Sci. U.S.A. 72, 3939–3943 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Springer, M. S., Goy, M. F. & Adler, J. Proc. natn. Acad. Sci. U.S.A. 74, 3312–3316 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Silverman, M. & Simon, M. Proc. natn. Acad. Sci. U.S.A. 74, 3317–3321 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Springer, M. S., Goy, M. F. & Adler, J. Nature 280, 279–284 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Parkinson, J. S. A. Rev. Genet. 11, 397–414 (1977).

    Article  CAS  Google Scholar 

  14. Silverman, M. & Simon, M. I. A. Rev. Microbiol. 31, 397–419 (1977).

    Article  CAS  Google Scholar 

  15. Springer, W. R. & Koshland, D. E. Jr Proc. natn. Acad. Sci. U.S.A. 74, 533–537 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Stock, J. B. & Koshland, D. E. Jr Proc. natn. Acad. Sci. U.S.A. 75, 3659–3663 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Silverman, M. & Simon, M. Nature 249, 73–74 (1974).

    Article  ADS  CAS  Google Scholar 

  18. Kobayasi, S., Maeda, K. & Imae, Y. Rev. scient. Instrum. 48, 407–410 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Berg, H. C., Manson, M. D. & Conley, M. P. Symp. Soc. exp. Biol. 35, 1–31 (1981).

    Google Scholar 

  20. Berg, H. C. & Tedesco, P. M. Proc. natn. Acad. Sci. U.S.A. 72, 3235–3239 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Spudich, J. L. & Koshland, D. E. Jr Proc. natn. Acad. Sci. U.S.A. 72, 710–713 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Crank, J. The Mathematics of Diffusion, 2nd edn (Clarendon, Oxford, 1975).

    MATH  Google Scholar 

  23. Purves, R. D. J. Neurosci. Meth. 1, 165–178 (1979).

    Article  CAS  Google Scholar 

  24. Muskavitch, M. A., Kort, E. N., Springer, M. S., Goy, M. F. & Adler, J. Science 201, 63–65 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Berg, H. C. Cold Spring Harb. Conf. Cell Proliferation 3, A47–A56 (1976).

    Google Scholar 

  26. Sherris, D. & Parkinson, J. S. Proc. natn. Acad. Sci. U.S.A. 78, 6051–6055 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Parkinson, J. S. J. Bact. 135, 45–53 (1978).

    Article  CAS  Google Scholar 

  28. Parkinson, J. S. Symp. Soc. gen. Microbiol. 31, 265–290 (1981).

    Google Scholar 

  29. Spudich, J. L. & Koshland, D. E. Jr Nature 262, 467–471 (1976).

    Article  ADS  CAS  Google Scholar 

  30. Parkinson, J. S. & Parker, S. R. Proc. natn. Acad. Sci. U.S.A. 76, 2390–2394 (1979).

    Article  ADS  CAS  Google Scholar 

  31. Berg, H. C. & Purcell, E. M. Biophys. J. 20, 193–219 (1977).

    Article  ADS  CAS  Google Scholar 

  32. Dreyer, F. & Peper, K. Pflügers Arch. ges. Physiol. 348, 263–272 (1974).

    Article  CAS  Google Scholar 

  33. Reilley, C. N. & Vavoulis, A. Analyt. Chem. 31, 243–248 (1959).

    Article  CAS  Google Scholar 

  34. Schanne, O. F., Lavalée, M., Laprade, R. & Gagné, S. Proc. IEEE 56, 1072–1082 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segall, J., Manson, M. & Berg, H. Signal processing times in bacterial chemotaxis. Nature 296, 855–857 (1982). https://doi.org/10.1038/296855a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296855a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing