Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of adh genotype and heat stress on alcohol tolerance in Drosophila melanogaster

Abstract

The alcohol dehydrogenase locus (adh) is polymorphic in most natural populations of Drosophila melanogaster1–11. Eight alleles have been identified on the basis of allozyme elec-trophoretic mobility and thermostability; two of these, adhFm and adhSm, generally have combined frequencies of 90%. In four widely separate locations these major alleles display a clinal change in frequency, that of adh Fm increasing with latitude and altitude3–6,11. Biochemical studies have shown that the Fm allozyme (ADHFm) is more active, but less heat-resistant, than ADHSm(refs 12–14). The fact that these differences are associated with the geographical distribution of the alleles suggests that environmental temperature may be a selective factor in maintaining this polymorphism. We have investigated the effect of high temperature on flies having ADH allozymes with a range of thermostabilities and report here that flies which have relatively labile enzymes show reduced survival on alcohol-supplemented food compared with flies possessing more heat-resistant allozymes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. O'Brien, S. J. & Maclntyre, R. J. Am. Nat. 103, 97–113 (1969).

    Article  Google Scholar 

  2. Berger, E. M. Genetics 66, 677–683 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Grossman, A. I., Koreneva, L. G. & Ulitskaya, L. E. Soviet Genet. 6, 211–214 (1970).

    Google Scholar 

  4. Pipkin, S. B., Rhodes, C. & Williams, N. J. Hered. 64, 181–185 (1973).

    Article  CAS  Google Scholar 

  5. Vigue, C. L. & Johnson, F. M. Biochem. Genet. 9, 214–227 (1973).

    Article  Google Scholar 

  6. Pipkin, S. B., Franklin-Springer, E., Law, S. & Lubega, S. J. Hered. 67, 258–266 (1976).

    Article  CAS  Google Scholar 

  7. Sampsell, B. Biochem. Genet. 15, 971–987 (1977).

    Article  CAS  Google Scholar 

  8. Voelker, R. A., Mukai, T. & Johnson, F. M. Genetica 2, 143–148 (1977).

    Article  Google Scholar 

  9. Malpica, J. M. & Vassalo, J. M. Nature 286, 407–408 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Wilkes, A. V., Gibson, J. B., Oakeshott, J. G. & Chambers, G. K. Aust. J. biol. Sci. 33, 575–585 (1980).

    Article  Google Scholar 

  11. McKay, F. T. C. Genet. Res. 37, 79–93 (1981).

    Article  Google Scholar 

  12. Gibson, J. B. & Miklovich, R. Experientia 27, 99–100 (1971).

    Article  CAS  Google Scholar 

  13. Day, T. H., Hillier, P. C. & Clarke, B. Biochem. Genet. 11, 141–165 (1974).

    Article  CAS  Google Scholar 

  14. Thorig, G. E. W., Schoone, A. A. & Scharloo, W. Biochem. Genet. 13, 721–731 (1975).

    Article  CAS  Google Scholar 

  15. Briscoe, D. A., Robertson, A. & Malpica, J. M. Nature 255, 148–149 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Morgan, P. Heredity 34, 124–127 (1975).

    Article  CAS  Google Scholar 

  17. McDonald, J. F. & Avise, J. C. Biochem. Genet. 14, 347–355 (1976).

    Article  CAS  Google Scholar 

  18. McDonald, J. F., Chambers, G. K., David, J. & Ayala, F. Proc. natn. Acad. Sci. U.S.A. 74, 4562–4566 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Thompson, J. N. & Kaiser, T. N. Heredity 38, 191–195 (1977).

    Article  CAS  Google Scholar 

  20. Kamping, A. & van Delden, W. Biochem. Genet. 16, 541–551 (1978).

    Article  CAS  Google Scholar 

  21. Sampsell, B. M. & Milkman, R. Biochem. Genet. 16, 1139–1141 (1978).

    Article  CAS  Google Scholar 

  22. Johnson, F. M. & Powell, A. Proc. natn. Acad. Sci. U.S.A. 71, 1783–1784 (1974).

    Article  ADS  CAS  Google Scholar 

  23. Milkman, R. Drosoph. Inf. Serv. 52, 58 (1977).

    Google Scholar 

  24. Johnson, F. M. & Schaffer, H. E. Biochem. Genet. 10, 149–163 (1973).

    Article  CAS  Google Scholar 

  25. Anderson, P. R. in Genetic Studies of Drosophila Populations (eds Gibson, J. B. & Oakeshott, J. G.) 237–250 (Australian National University Press, Canberra, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampsell, B., Sims, S. Effect of adh genotype and heat stress on alcohol tolerance in Drosophila melanogaster. Nature 296, 853–855 (1982). https://doi.org/10.1038/296853a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296853a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing