Article | Published:

Enzymatic synthesis of bacteriophage fd viral DNA

Nature volume 296, pages 828832 (29 April 1982) | Download Citation

Subjects

Abstract

An enzyme system with requirements similar to those for replication of phage fd replicative form (RF) DNA in bacteriophage fd-infected cells has been reconstituted with purified fd gene 2 protein, and DNA polymerase III holoenzyme, DNA binding protein I and rep-protein (rep-helicase) of Escherichia coli. The system generates viral circular single strands, which are infective for E. coli spheroplasts. Parental and newly synthesized DNA are covalently connected in early stages of replication, as expected for DNA replication using the rolling circle mechanism. Single-stranded tails of the rolling circle intermediates are cleaved after a full round of replication by gene 2 protein and circularized by the same enzyme molecule.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Gene 16, 35–58 (1981).

  2. 2.

    & Bact. Rev. 33, 172–209 (1969).

  3. 3.

    & Proc. natn. Acad. Sci. USA 78, 5416–5420 (1981).

  4. 4.

    Eur. J. Biochem. 49, 249–256 (1974).

  5. 5.

    , & J. Bact. 140, 14–19 (1980).

  6. 6.

    , & Proc. natn. Acad. Sci. U.S.A. 68, 2826–2829 (1971).

  7. 7.

    , & Eur. J. Biochem. 38, 130–136 (1973).

  8. 8.

    & J. molec. Biol. 83, 63–82 (1974).

  9. 9.

    Comprehensive Virol. 7, 1–104 (1977).

  10. 10.

    , & Proc. natn. Acad. Sci. U.S.A. 69, 2570–2573 (1972).

  11. 11.

    , & J. Virol. 16, 348–355 (1975).

  12. 12.

    & J. biol. Chem. 249, 3999–4005 (1974).

  13. 13.

    & ICN-UCLA Symp. molec. cell. Biol., 579–588 (1980).

  14. 14.

    & J. biol. Chem. 254, 12642–12646 (1979).

  15. 15.

    , , & Nature 278, 365–367 (1979).

  16. 16.

    & Proc. natn. Acad. Sci. U.S.A. 73, 2341–2345 (1976).

  17. 17.

    , & J. biol. Chem. 257 (in the press).

  18. 18.

    , , & Eur. J. Biochem. 119, 663–668 (1981).

  19. 19.

    , , & J. biol. Chem. 256, 5810–5813 (1981).

  20. 20.

    , , & Nucleic Acids Res. 5, 1689–1700 (1978).

  21. 21.

    , , & J. biol. Chem. 256, 5233–5238 (1981).

  22. 22.

    , , & J. biol. Chem. 256, 5239–5246 (1981).

  23. 23.

    et al. ICN-UCLA Symp. molec. cell. Biol., 545–568 (1980).

  24. 24.

    et al. ICN-UCLA Symp. molec. cell. Biol., 449–473 (1980).

  25. 25.

    et al. ICN-UCLA Symp. molec. cell. Biol., 411–428 (1980).

  26. 26.

    , , & Proc. natn. Acad. Sci. U.S.A. 76, 3632–3636 (1979).

  27. 27.

    & Biochim. biophys. Acta 474, 639–645 (1977).

  28. 28.

    , & Proc. natn. Acad. Sci. U.S.A. 58, 2321–2328 (1967).

  29. 29.

    & J. molec. Biol. 72, 37–49 (1972).

  30. 30.

    & J. molec. Biol. 72, 51–63 (1972).

  31. 31.

    & J. biol. Chem. 254, 12636–12641 (1979).

  32. 32.

    , & Cold Spring Harbor Symp. quant. Biol. 43, 389–399 (1978).

  33. 33.

    & Biochim. biophys. Acta 72, 290–297 (1963).

Download references

Author information

Affiliations

  1. Max-Planck-Institut für medizinische Forschung, Abteilung Molekulare Biologie, Jahnstrasse 29, D 6900 Heidelberg, FRG

    • Thomas F. Meyer
    •  & Klaus Geider

Authors

  1. Search for Thomas F. Meyer in:

  2. Search for Klaus Geider in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/296828a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.