Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced transformation of human fibroblasts by origin-defective simian virus 40

Abstract

Transformation of semipermissive human fibroblasts (HF) by wild-type simian virus 40 (SV40) or SV40 DNA is relatively inefficient compared with SV40 transformation of non-permissive rodent cells1. Whereas HF transformed with either SV40 or a subgenomic fragment of SV40 (that is incapable of making virions) containing the early region and the origin of DNA replication produce large amounts of free virus DNA2–5, established human cell lines transformed by SV40 harbour defective virus genomes6 that are incapable of initiating virus DNA replication (M. Botchan, personal communication). We have now investigated whether the low efficiency of transformation is directly related to the ability of SV40 DNA to replicate autonomously in semipermissive HF. We have compared the efficiency of transformation of HF by origin-defective SV40 DNA (SV ori) with that of other derivatives containing a functional viral origin of replication, using the calcium phosphate co-precipitation technique7. The transforming potential of SV ori mutants was found to be superior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Topp, W. C., Lane, D. & Pollack, R. in The Molecular Biology of Tumor Viruses Pt2, 2nd edn (ed. Tooze, J.) 215–216 (Cold Spring Harbor Laboratory, New York, 1980).

    Google Scholar 

  2. Girardi, A. J., Jensen, F. C. & Koprowski, H. J. J. cell. comp. Phys. 65, 69–84 (1965).

    Article  CAS  Google Scholar 

  3. Fogh, J. N. & Loveless, J. J. natn. Cancer Inst. 60, 895–898 (1978).

    Article  CAS  Google Scholar 

  4. Kucherlapati, R., Hwang, S. P., Shimizu, N., McDougall, J. K. & Botchan, M. R. Proc. natn. Acad. Sci. U.S.A. 75, 4460–4464 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Zouzias, D., Jha, K. K., Mulder, C., Basilico, C. & Ozer, H. L. Virology 104, 439–453 (1980).

    Article  CAS  Google Scholar 

  6. Huebner, K., Santoli, D., Croce, C. M. & Koprowski, H. Virology 63, 512–522 (1975).

    Article  CAS  Google Scholar 

  7. Graham, F. L. & Van der Eb, A. J. Virology 52, 456–467 (1973).

    Article  CAS  Google Scholar 

  8. Gluzman, Y., Frisque, R. J. & Sambrook, J. Cold Spring Harb. Symp. quant. Biol. 44, 293–300 (1980).

    Article  CAS  Google Scholar 

  9. Gluzman, Y., Sambrook, J. F. & Frisque, R. J. Proc. natn. Acad. Sci. U.S.A. 77, 3898–3902 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Gluzman, Y. Cell 23, 175–182 (1981).

    Article  CAS  Google Scholar 

  11. Smith, H. S., Owens, R. B., Hiller, A. J., Nelson-Rees, W. A. & Johnston, J. O. Int. J. Cancer 17, 219–234 (1976).

    Article  CAS  Google Scholar 

  12. Ozer, H. L., Slater, M. L., Dermody, J. J. & Mandel, N. J. Virology 39, 481–489 (1981).

    CAS  Google Scholar 

  13. Shin, S. I., Freedman, V. H., Risser, R. & Pollack, R. Proc. natn. Acad. Sci. U.S.A. 72, 4435–4439 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Lusky, M. & Botchan, M. Nature 293, 79–81 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Reddy, V. B. et al. Science 200, 494–502 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Fiers, W. et al. Nature 273, 113–120 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Hayflick, L. & Moorhead, P. S. Expl Cell Res. 25, 585–621 (1961).

    Article  CAS  Google Scholar 

  18. Hirt, B. J. molec. Biol. 26, 365–369 (1967).

    Article  CAS  Google Scholar 

  19. Radloff, R., Bauer, W. & Vinograd, J. Proc. natn. Acad. Sci. U.S.A. 57, 1514–1521 (1967).

    Article  ADS  CAS  Google Scholar 

  20. Guerry, P., LeBlanc, D. J. & Falcow, S. J. Bact. 116, 1064 (1973).

    CAS  Google Scholar 

  21. Wigler, M., Pellicer, A., Silverstein, S. & Axel, R. Cell 14, 725–731 (1978).

    Article  CAS  Google Scholar 

  22. McDonell, M. W., Simon, M. N. & Studier, F. W. J. molec. Biol. 110, 119–146 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, M., Gluzman, Y. & Ozer, H. Enhanced transformation of human fibroblasts by origin-defective simian virus 40. Nature 296, 671–672 (1982). https://doi.org/10.1038/296671a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296671a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing