Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Axon segments sprout at both ends: tracking growth with fluorescent D-peptides

Abstract

In the nervous systems of many animals, including vertebrates, isolated axon segments can survive for weeks or even months1–3; they can participate in regeneration4,5 and in some cases receive synapses from regenerating axons6,7. Axon segments in cell culture exhibit limited growth8–10. Although lengths of axon may grow in more intact systems11–14, direct evidence for this has been difficult to obtain, partly because of the difficulty of marking isolated axon segments. We have injected fluorescently labelled synthetic D-peptides15 into identified neurones in the leech central nervous system to mark axon segments. We report here that individual segments can initiate growth at both ends and grow for days, both in organ culture and in vivo. These results support the hypothesis that axon growth is not essentially polar and suggest a novel mechanism by which axon segments may assist nerve regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Albuquerque, E. X., Deshpande, S. S. & Guth, L. Expl Neurol. 62, 347–373 (1978).

    Article  CAS  Google Scholar 

  2. Anderson, H., Edwards, J. S. & Palka, J. A. Rev. Neurosci. 3, 97–139 (1980).

    Article  CAS  Google Scholar 

  3. Matsumoto, D. E. & Scalia, F. J. comp. Neurol. 202, 135–155 (1981).

    Article  CAS  Google Scholar 

  4. Hoy, R. R., Bittner, G. D. & Kennedy, D. Science 156, 251–252 (1967).

    Article  ADS  CAS  Google Scholar 

  5. Muller, K. J. & Carbonetto, S. J. comp. Neurol. 185, 485–516 (1979).

    Article  CAS  Google Scholar 

  6. Carbonetto, S. & Muller, K. J. Nature 267, 450–452 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Krasne, F. B. & Lee, S. H. Science 198, 517–519 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Levi, G. & Meyer, H. J. exp. Zool. 99, 141–181 (1945).

    Article  Google Scholar 

  9. Shaw, G. & Bray, D. Expl Cell Res. 104, 55–62 (1977).

    Article  CAS  Google Scholar 

  10. Wessells, N. K., Johnson, S. R. & Nuttall, R. P. Expl Cell Res. 117, 335–345 (1978).

    Article  CAS  Google Scholar 

  11. Cajal, S. Ramon y (Hafner, New York, 1928).

    Google Scholar 

  12. Clark, R. D. J. comp. Neurol. 170, 253–266 (1976).

    Article  CAS  Google Scholar 

  13. Birse, S. C. & Bittner, G. D. J. Neurophysiol. 45, 724–742 (1981).

    Article  CAS  Google Scholar 

  14. Rotshenker, S. Brain Res. 223, 141–145 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Weisblat, D. A., Zackson, S. L., Blair, S. S. & Young, J. D. Science 209, 1538–1541 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Nicholls, J. G. & Baylor, D. A. J. Neurophysiol. 31, 740–756 (1968).

    Article  CAS  Google Scholar 

  17. Kater, S. B. & Hadley, R. D. Soc. Neurosci. Abstr. 6, 686 (1980).

    Google Scholar 

  18. Speidel, C. C. Am. J. Anat. 52, 1–79 (1933).

    Article  Google Scholar 

  19. Fuchs, P. A., Nicholls, J. G. & Ready, D. F. J. Physiol., Lond. 316, 203–223 (1981).

    Article  CAS  Google Scholar 

  20. Parnas, I. & Bowling, D. Nature 270, 626–628 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Heuser, J. E. & Reese, T. S. J. Cell Biol. 57, 315–344 (1973).

    Article  CAS  Google Scholar 

  22. Muller, K. J. & McMahan, U. J. Proc. R. Soc. B194, 481–499 (1976).

    ADS  CAS  Google Scholar 

  23. Muller, K. J. Biol. Rev. 54, 99–134 (1979).

    Article  CAS  Google Scholar 

  24. Campenot, R. B. Proc. natn. Acad. Sci. U.S.A. 74, 4516–4519 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Gundersen, R. W. & Barrett, J. N. J. Cell Biol. 87, 546–554 (1980).

    Article  CAS  Google Scholar 

  26. Chalfie, M. & Thomson, J. N. J. Cell Biol. 82, 278–289 (1979).

    Article  CAS  Google Scholar 

  27. Grafstein, B. & Forman, D. S. Physiol. Rev. 60, 1167–1283 (1980).

    Article  CAS  Google Scholar 

  28. Bisby, M. A. J. Neurochem. 36, 741–745 (1981).

    Article  CAS  Google Scholar 

  29. Lasek, R. J., Gainer, H. & Barker, J. L. J. Cell Biol. 74, 501–523 (1977).

    Article  CAS  Google Scholar 

  30. Miyazaki, S. & Nicholls, J. G. Proc. R. Soc. B194, 295–311 (1976).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, A., Muller, K. Axon segments sprout at both ends: tracking growth with fluorescent D-peptides. Nature 296, 655–657 (1982). https://doi.org/10.1038/296655a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296655a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing