Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Free Ca2+ and cytoplasmic streaming in the alga Chara

Abstract

Plant cells, like those of animals, contain the Ca2+-binding protein calmodulin1–4. By analogy with animal cells it has thus been suggested that the intracellular free Ca2+ concentration may have an important role in the regulation of plant cell activities. This suggestions has been supported by various physiological experiments, but so far direct evidence, invol ving measurements of intracellular Ca2+ levels, has not been obtained. We describe here measurements of intracellular Ca2+ in the giant alga Chara by microinjection of the protein aequorin, which emits blue light in proportion to Ca2+ concentration. Chara exhibit an ATP-dependent cytoplasmic streaming shown to be inhibited by Ca2+ (refs 5, 6). We report that Chara cells have a low free Ca2+ concentration, comparable with those of animal cells, and that action potentials which inhibit cytoplasmic streaming7 increase this Ca2+ concentration substantially.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anderson, J. M., Charbonneau, H., Jones, H. P., McCann, R. O. & Cormier, M. J. Biochemistry 19, 3113–3120 (1980).

    Article  CAS  Google Scholar 

  2. Grand, R. J. A., Nairn, A. C. & Perry, S. V. Biochem. J. 185, 755–760 (1980).

    Article  CAS  Google Scholar 

  3. Gitelman, S. E. & Witman, G. B. J. Cell Biol. 87, 764–770 (1980).

    Article  CAS  Google Scholar 

  4. Van Eldik, L. J., Piperno, G. & Watterson, D. M. Ann. N.Y. Acad. Sci. 356, 36–42 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Williamson, R. E. J. Cell Sci. 17, 655–668 (1975).

    CAS  Google Scholar 

  6. Tazawa, M., Kikuyama, M. & Shimmen, T. Cell Struct. Funct. 1, 165–176 (1976).

    Article  CAS  Google Scholar 

  7. Ashley, C. C. & Williamson, R. E. J. Physiol., Lond. 319, 103P (1981).

    Google Scholar 

  8. Hayama, T., Shimmen, T. & Tazawa, M. Protoplasma 99, 305–321 (1979).

    Article  Google Scholar 

  9. Tazawa, M. & Kishimoto, U. Pl. Cell Physiol. 5, 45–59 (1964).

    Article  CAS  Google Scholar 

  10. Hope, A. B. & Walker, N. A. The Physiology of Giant Algal Cells (Cambridge University Press, 1975).

    Google Scholar 

  11. Taylor, C. V. & Whitaker, D. M. Protoplasma 3, 1–6 (1928).

    Article  Google Scholar 

  12. Hoagland, D. R. & Davis, A. R. J. gen. Physiol. 5, 629–646 (1923).

    Article  CAS  Google Scholar 

  13. Hoagland, D. R. & Davis, A. R. Protoplasma 6, 610–626 (1929).

    Article  Google Scholar 

  14. Gaffey, C. T. & Mullins, L. J. J. Physiol., Lond. 144, 505–524 (1958).

    Article  CAS  Google Scholar 

  15. Spanswick, R. M. & Williams, E. J. J. exp. Bot. 16, 463–473 (1965).

    Article  CAS  Google Scholar 

  16. Hayama, T. & Tazawa, M. Protoplasma 102, 1–9 (1980).

    Article  CAS  Google Scholar 

  17. Tazawa, M. & Kishimoto, U. Pl. Cell Physiol. 9, 361–368 (1968).

    Google Scholar 

  18. Neering, I. R. & Morgan, K. G. Nature 288, 585–587 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Kerrick, W. G. L., Hoar, P. E. & Cassidy, P. S. Fedn Proc. 39, 1558–1563 (1980).

    CAS  Google Scholar 

  20. Fay, F. S. Nature 265, 553–556 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Fay, F. S., Shlevin, H. H., Granger, W. D. Jr. & Taylor, S. R. Nature 280, 506–508 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Conti, M. A. & Adelstein, R. S. Fedn. Proc. 39, 1569–1573 (1980).

    CAS  Google Scholar 

  23. Kerrick, W. G. L. & Hoar, P. E. Nature 292, 253–255 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Potter, J. D., Piascik, M. T., Wisler, P. L., Robertson, S. P. & Johnson, C. L. Ann. N.Y. Acad. Sci. 356, 220–231 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Williamson, R. E. & Toh, B. H. in Cell Motility: Molecules and Organisation (eds Hatano, S., Ishakawa, H. & Sato, H.) 339–346 (Tokyo University Press, 1979).

    Google Scholar 

  26. Findlay, G. P. & Hope, A. B. Aust. J. biol. Sci. 17, 62–77 (1964).

    Article  CAS  Google Scholar 

  27. Mullins, L. J. Nature 196, 986–987 (1962).

    Article  ADS  CAS  Google Scholar 

  28. Barry, W. H. J. Cell Physiol. 72, 153–159 (1968).

    Article  CAS  Google Scholar 

  29. Umrath, K. Protoplasma 42, 77–82 (1953).

    Article  Google Scholar 

  30. Kishimoto, U. & Akabori, H. J. gen. Physiol. 42, 1167–1183 (1959).

    Article  CAS  Google Scholar 

  31. Endo, M. Physiol. Rev. 57, 71–108 (1977).

    Article  CAS  Google Scholar 

  32. Paul, D. C. & Goff, C. H. W. Expl Cell Res. 78, 399–413 (1973).

    Article  CAS  Google Scholar 

  33. Robinson, D. G., Eur. J. Cell Biol. 23, 267–272 (1981).

    CAS  PubMed  Google Scholar 

  34. Marchant, H. J. J. Phycol. 13, 28–36 (1977).

    Google Scholar 

  35. Ashley, C. C. & Campbell, A. K. (eds) Detection and Measurement of Free Ca2+ in Cells (North Holland, Amsterdam, 1979).

  36. Pickard, B. G. Bot. Rev. 39, 172–201 (1973).

    Article  Google Scholar 

  37. Gradman, D. & Mummert, H. in Plant Membrane Transport: Current Conceptual Issues (eds Spanswick, R. M., Lucas, W. J., Dainty, J.) (North-Holland, Amsterdam, 1980).

    Google Scholar 

  38. Goodwin, B. C. & Patermichelakis, S. Planta 145, 427–435 (1979).

    Article  CAS  Google Scholar 

  39. Rogatykh, N. P., Melkumyan, V. G. & Zubarev, T. N. in Developmental Biology of Acetabularia (eds Bonotto, S., Kefeli, V. & Puiseux-Dao, S.) 85–94 (North Holland, Amsterdam, 1979).

    Google Scholar 

  40. Jarrett, H. W., Charbonneau, H., Anderson, J. M., McCann, R. O. & Cormier, M. J. Ann. N.Y. Acad. Sci. 356, 119–129 (1980).

    Article  ADS  CAS  Google Scholar 

  41. Weisenseel, M. H. & Ruppert, H. K. Planta 137, 225–229 (1977).

    Article  CAS  Google Scholar 

  42. Roux, S. J., McEntire, K., Slocum, R. D., Cedel, T. E. & Hale II, C. C. Proc. natn. Acad. Sci. U.S.A. 78, 283–287 (1981).

    Article  ADS  CAS  Google Scholar 

  43. Wagner, G. & Klein, K. Photochem. Photobiol. 27, 137–140 (1978).

    Article  CAS  Google Scholar 

  44. Elliott, D. C. Biochem. Int. 1, 290–294 (1980).

    CAS  Google Scholar 

  45. Allen, D. G. & Blinks, J. R. in Detection and Measurement of Free Ca2+ in Cells (eds Ashley, C. C. & Campbell, A. K.) 159–174 (North-Holland, Amsterdam, 1979).

    Google Scholar 

  46. Hatano, S. & Nakajima, H. Ann. Rep. Sci. Works Fac. Sci. Osaka Univ. 11, 71–76 (1963).

    CAS  Google Scholar 

  47. Shimmen, T. Cell Struct. Funct. 3, 113–121 (1978).

    Article  CAS  Google Scholar 

  48. Keiffer, D. W. & Spanswick, R. M. Pl. Physiol. 64, 165–168 (1979).

    Article  Google Scholar 

  49. Smith, F. A. & Raven, J. A. A. Rev. Pl. Physiol. 30, 289–311 (1979).

    Article  CAS  Google Scholar 

  50. Yin, H. L. & Stossel, T. P. Nature 281, 583–586 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, R., Ashley, C. Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296, 647–651 (1982). https://doi.org/10.1038/296647a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296647a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing