Letter | Published:

Seismicity and rheology of subducted slabs

Nature volume 296, pages 553556 (08 April 1982) | Download Citation

Subjects

Abstract

Since the incorporation of the inclined zones of intermediate and deep seismic activity into the theory of plate tectonics1,2 it has been generally accepted that earthquakes with focal depths 100 km occur in subducted slabs of (predominantly oceanic) lithosphere. Yet our understanding of the processes which generate intermediate and, in particular, deep earthquakes is still incomplete. This is largely due to our limited knowledge of the rheological behaviour of subducted oceanic lithosphere at depths between 100 and 700 km. However, recently considerable insight has been gained into the rheology of oceanic lithosphere in near-surface conditions and I investigate here whether the seismic activity at depths >100 km can be understood on the basis of this information. I first present results of temperature calculations performed for all subduction zones for which adequate data on seismicity, relative plate motion and age of the descending oceanic lithosphere exist. Sub-sequently, I adapt the temperature conditions governing the rheology near the surface by including depth-dependence. This leads to a depth-dependent critical temperature Tcr(z) above which the subducted lithosphere cannot sustain the stresses necessary to generate seismic events. Seismicity data and calculated temperature versus depth relationships are in good agreement with the rheological model predictions. This implies that the absence of seismic activity at depths 700 km should not be interpreted as direct evidence for the hypothesis that the 650-km discontinuity in the mantle acts as a barrier to vertical motion of subducted slabs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & J. geophys. Res. 73, 5855–5899 (1968).

  2. 2.

    & Rev. Geophys. Space Phys. 9, 103–174 (1971).

  3. 3.

    Geophys. J. R. astr. Soc. 18, 1–32 (1969). Tectonophysics 10, 357–366 (1970).

  4. 4.

    in The Nature of the Solid Earth (ed. Robertson, E. C.) 361–384 (McGraw-Hill, New York, 1972).

  5. 5.

    & Tectonophysics 32, 331–351 (1976).

  6. 6.

    & J. geophys. Res. 82, 803–827 (1977).

  7. 7.

    Nature 256, 388–390 (1975).

  8. 8.

    , , & Geophys. J. R. astr. Soc. 36, 541–576 (1974). J. geophys. Res. 80, 4433–4439 (1975).

  9. 9.

    , & The Age of the Ocean Basins and Magnetic Lineations of the Ocean (Charts, Geological Society of America, Boulder, 1974).

  10. 10.

    & J. geophys. Res. 76, 7980–1987 (1971).

  11. 11.

    & J. geophys. Res. 77, 6966–6983 (1972).

  12. 12.

    & Phys. Earth planet. Inter. 17, 201–208 (1978).

  13. 13.

    & J. geophys. Res. 83, 5331–5354 (1978).

  14. 14.

    thesis, Univ. Utrecht (1980).

  15. 15.

    , , Geophys. J. R. astr. Soc. 56, 41–54 (1979).

  16. 16.

    & J. geophys. Res. 84, 7572–7576 (1979).

  17. 17.

    , & J. geophys. Res. 86, 3695–3707 (1981).

  18. 18.

    & J. geophys. Res. 84, 6729–6749 (1979); Phys. Earth planet. Inter. (in the press).

  19. 19.

    & J. geophys. Res. 83, 4995–5003 (1978).

  20. 20.

    Phil. Trans. R. Soc. London A288, 99–119 (1978).

  21. 21.

    & A. Rev. Earth planet. Sci. 3, 293–315 (1975).

  22. 22.

    Phys. Earth planet. Inter. 15, 341–348 (1977).

  23. 23.

    & Prof. J. Coulomb Symp. on Source Mechanism and Earthquake Prediction (1980).

  24. 24.

    & Tectonophysics 13, 221–232 (1972).

  25. 25.

    & Geophys. Res. Lett. 4, 473–476 (1977).

  26. 26.

    thesis, Southern Methodist Univ., Dallas (1974).

  27. 27.

    , , & Tectonophysics 57, 1–6 (1979).

  28. 28.

    Geophys. J. R. astr. Soc. 49, 459–486 (1977).

  29. 29.

    Tectonophysics 38, 119–136 (1977).

  30. 30.

    J. geophys. Res. 84, 6783–6795 (1979).

  31. 31.

    in Physics of the Earth's Interior (eds Dziewonski, A. M. & Boschi, E.) 361–431 (North Holland, Amsterdam, 1980).

  32. 32.

    Tectonophysics 42, 209–226 (1977).

  33. 33.

    & J. geophys. Res. 74, 5923–5948 (1969).

  34. 34.

    Geol. Surv. profess. Pap. 1078 (1979).

  35. 35.

    & J. geophys. Res. 75, 1431–1444 (1970).

  36. 36.

    J. geophys. Res. 71, 2981–3006 (1966).

  37. 37.

    & J. geophys. Res. 73, 3859–3876 (1968).

  38. 38.

    & Geology 4, 688–692 (1976).

  39. 39.

    & Bull, seism. Soc. Am. 64, 1033–1048 (1974).

  40. 40.

    & Bull. geol. Soc. Am. 80, 1639–1684 (1969).

  41. 41.

    & J. geophys. Res. 71, 1659–1667 (1966).

  42. 42.

    , & in Island Arcs, Deep Sea Trenches and Back-arc Basins (eds Talwani, M. & Pitman, W. C. III), 243–258 (American Geophysical Union, Washington DC, 1977).

  43. 43.

    in Island Arcs, Deep Sea Trenches and Back-arc Basins (eds Talwani, M. & Pitman, W. C. III) 259–272 (American Geophysical Union, Washington DC, 1977).

Download references

Author information

Affiliations

  1. Vening Meinesz Laboratory, Instituut voor Aardwetenschappen, University of Utrecht, Budapestlaan 4, 3584 CD Utrecht, The Netherlands

    • Rinus Wortel

Authors

  1. Search for Rinus Wortel in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/296553a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.