Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismicity and rheology of subducted slabs

Abstract

Since the incorporation of the inclined zones of intermediate and deep seismic activity into the theory of plate tectonics1,2 it has been generally accepted that earthquakes with focal depths 100 km occur in subducted slabs of (predominantly oceanic) lithosphere. Yet our understanding of the processes which generate intermediate and, in particular, deep earthquakes is still incomplete. This is largely due to our limited knowledge of the rheological behaviour of subducted oceanic lithosphere at depths between 100 and 700 km. However, recently considerable insight has been gained into the rheology of oceanic lithosphere in near-surface conditions and I investigate here whether the seismic activity at depths >100 km can be understood on the basis of this information. I first present results of temperature calculations performed for all subduction zones for which adequate data on seismicity, relative plate motion and age of the descending oceanic lithosphere exist. Sub-sequently, I adapt the temperature conditions governing the rheology near the surface by including depth-dependence. This leads to a depth-dependent critical temperature Tcr(z) above which the subducted lithosphere cannot sustain the stresses necessary to generate seismic events. Seismicity data and calculated temperature versus depth relationships are in good agreement with the rheological model predictions. This implies that the absence of seismic activity at depths 700 km should not be interpreted as direct evidence for the hypothesis that the 650-km discontinuity in the mantle acts as a barrier to vertical motion of subducted slabs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Isacks, B., Oliver, J. & Sykes, L. R. J. geophys. Res. 73, 5855–5899 (1968).

    Article  ADS  Google Scholar 

  2. Isacks, B. & Molnar, P. Rev. Geophys. Space Phys. 9, 103–174 (1971).

    Article  ADS  Google Scholar 

  3. McKenzie, D. P. Geophys. J. R. astr. Soc. 18, 1–32 (1969). McKenzie, D. P. Tectonophysics 10, 357–366 (1970).

    Article  ADS  Google Scholar 

  4. Griggs, D. T. in The Nature of the Solid Earth (ed. Robertson, E. C.) 361–384 (McGraw-Hill, New York, 1972).

    Google Scholar 

  5. Vlaar, N. J. & Wortel, M. J. R. Tectonophysics 32, 331–351 (1976).

    Article  ADS  Google Scholar 

  6. Parsons, B. & Sclater, J. G. J. geophys. Res. 82, 803–827 (1977).

    Article  ADS  Google Scholar 

  7. Crough, S. T. Nature 256, 388–390 (1975).

    Article  ADS  Google Scholar 

  8. Minster, J. B., Jordan, T. H., Molnar, P. & Haines, E. Geophys. J. R. astr. Soc. 36, 541–576 (1974). Jordan, T. H. J. geophys. Res. 80, 4433–4439 (1975).

    Article  ADS  Google Scholar 

  9. Pitman, W. C. III, Larson, R. L. & Herron, E. M. The Age of the Ocean Basins and Magnetic Lineations of the Ocean (Charts, Geological Society of America, Boulder, 1974).

    Google Scholar 

  10. Turcotte, D. L. & Schubert, G. J. geophys. Res. 76, 7980–1987 (1971).

    Article  ADS  Google Scholar 

  11. Schatz, J. F. & Simmons, G. J. geophys. Res. 77, 6966–6983 (1972).

    Article  ADS  CAS  Google Scholar 

  12. Wortel, M. J. R. & Vlaar, N. J. Phys. Earth planet. Inter. 17, 201–208 (1978).

    Article  ADS  Google Scholar 

  13. Minster, J. B. & Jordan, T. H. J. geophys. Res. 83, 5331–5354 (1978).

    Article  ADS  Google Scholar 

  14. Wortel, R. thesis, Univ. Utrecht (1980).

  15. Molnar, P., Freedman, D., Shih, J. S. F. Geophys. J. R. astr. Soc. 56, 41–54 (1979).

    Article  ADS  Google Scholar 

  16. Caldwell, J. G. & Turcotte, D. L. J. geophys. Res. 84, 7572–7576 (1979).

    Article  ADS  Google Scholar 

  17. Bodine, J. H., Steckler, M. S. & Watts, A. B. J. geophys. Res. 86, 3695–3707 (1981).

    Article  ADS  Google Scholar 

  18. Chapple, W. M. & Forsyth, D. W. J. geophys. Res. 84, 6729–6749 (1979); Forsyth, D. W. Phys. Earth planet. Inter. (in the press).

    Article  ADS  Google Scholar 

  19. Chen, T. & Forsyth, D. W. J. geophys. Res. 83, 4995–5003 (1978).

    Article  ADS  Google Scholar 

  20. Goetze, C. Phil. Trans. R. Soc. London A288, 99–119 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Weertman, J. & Weertman, J. R. A. Rev. Earth planet. Sci. 3, 293–315 (1975).

    Article  ADS  Google Scholar 

  22. Stacey, F. D. Phys. Earth planet. Inter. 15, 341–348 (1977).

    Article  ADS  Google Scholar 

  23. Anderson, D. L. & Minster, J. B. Prof. J. Coulomb Symp. on Source Mechanism and Earthquake Prediction (1980).

  24. Kennedy, G. C. & Higgins, G. H. Tectonophysics 13, 221–232 (1972).

    Article  ADS  CAS  Google Scholar 

  25. Engdahl, E. R. & Scholz, C. H. Geophys. Res. Lett. 4, 473–476 (1977).

    Article  ADS  Google Scholar 

  26. Veith, K. F. thesis, Southern Methodist Univ., Dallas (1974).

  27. Hasegawa, A., Umino, N., Takagi, A. & Suzuki, Z. Tectonophysics 57, 1–6 (1979).

    Article  ADS  Google Scholar 

  28. Davies, G. F. Geophys. J. R. astr. Soc. 49, 459–486 (1977).

    Article  ADS  Google Scholar 

  29. O'Connell, R. J. Tectonophysics 38, 119–136 (1977).

    Article  ADS  Google Scholar 

  30. Richter, F. M. J. geophys. Res. 84, 6783–6795 (1979).

    Article  ADS  Google Scholar 

  31. Peltier, W. R. in Physics of the Earth's Interior (eds Dziewonski, A. M. & Boschi, E.) 361–431 (North Holland, Amsterdam, 1980).

    Google Scholar 

  32. Seno, T. Tectonophysics 42, 209–226 (1977).

    Article  ADS  Google Scholar 

  33. Katsumata, M. & Sykes, L. R. J. geophys. Res. 74, 5923–5948 (1969).

    Article  ADS  Google Scholar 

  34. Hamilton, W. Geol. Surv. profess. Pap. 1078 (1979).

  35. Fitch, T. J. & Molnar, P. J. geophys. Res. 75, 1431–1444 (1970).

    Article  ADS  Google Scholar 

  36. Sykes, L. R. J. geophys. Res. 71, 2981–3006 (1966).

    Article  ADS  Google Scholar 

  37. Hamilton, R. M. & Gale, A. W. J. geophys. Res. 73, 3859–3876 (1968).

    Article  ADS  Google Scholar 

  38. Barazangi, M. & Isacks, B. L. Geology 4, 688–692 (1976).

    Article  ADS  Google Scholar 

  39. Dewey, J. W. & Algermissen, S. T. Bull, seism. Soc. Am. 64, 1033–1048 (1974).

    Google Scholar 

  40. Molnar, P. & Sykes, L. R. Bull. geol. Soc. Am. 80, 1639–1684 (1969).

    Article  Google Scholar 

  41. Tobin, D. G. & Sykes, L. R. J. geophys. Res. 71, 1659–1667 (1966).

    Article  ADS  Google Scholar 

  42. Jacob, K. H., Nakamura, K. & Davies, J. N. in Island Arcs, Deep Sea Trenches and Back-arc Basins (eds Talwani, M. & Pitman, W. C. III), 243–258 (American Geophysical Union, Washington DC, 1977).

    Book  Google Scholar 

  43. Engdahl, E. R. in Island Arcs, Deep Sea Trenches and Back-arc Basins (eds Talwani, M. & Pitman, W. C. III) 259–272 (American Geophysical Union, Washington DC, 1977).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wortel, R. Seismicity and rheology of subducted slabs. Nature 296, 553–556 (1982). https://doi.org/10.1038/296553a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296553a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing