Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A model for the cosmic creation of nuclear exergy

Abstract

The exergy1 of a physical system is the maximum amount of mechanical work that can be extracted from that system so that a system in thermodynamic equilibrium has zero exergy. An old theme in cosmic thermodynamics is that the second law implies that the Universe is running down (running out of exergy) and approaching thermodynamic equilibrium, ‘heat death’. However, in the standard model of the early Universe2, at 0.01 s after the big bang the Universe consisted of ordinary matter (nucleons), electrons and positrons, neutrinos, photons and gravitons. The gravitons were decoupled, but the others were in thermodyamic equilibrium. Thus the Universe had already reached the state of heat death, and its exergy was zero. The main problem is, therefore, not to describe the running-down of the Universe, but to understand its revival. When and how was exergy created, in particular the nuclear exergy, which is transformed into life-supporting light in our Sun? We have studied a model which should represent the nucleon gas of the early Universe quite well. We find that the main creation of nuclear exergy started around 10 s after the big bang, and most of the exergy was created during the first few minutes, 85% during the first hour, and that the process was essentially completed during the first 24 h. The final value of the exergy was 7.72 MeV per nucleon. The consumption of this exergy started much later and takes place in the stars over a time scale of hundreds and thousands of millions of years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rant, Z. Forsch. Geb. IngWes. 22, 36 (1956).

    Google Scholar 

  2. Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972).

    Google Scholar 

  3. Tolman, R. C. Relativity, Thermodynamics and Cosmology (Oxford University Press, 1934).

    MATH  Google Scholar 

  4. Layzer, D. Scient. Am. 233, 56 (1975).

    Article  Google Scholar 

  5. Landsberg, P. Thermodynamics and Statistical Mechanics, 233, 366–367 (Oxford University Press, 1978).

    Google Scholar 

  6. Baehr, H. D. Energie und Exergie (VDI, Düsseldorf, 1965).

    Google Scholar 

  7. Tribus, M., Shannon, P. T. & Evans, R. B. Am. Inst. Chem. Engng J. 12, 244 (1966).

    Article  CAS  Google Scholar 

  8. Evans, R. B. thesis, Dartmouth College, Hannover, New Hampshire (1969).

  9. Tribus, M. & McIrvine, E. C. Scient. Am. 225, 179 (1971).

    Article  Google Scholar 

  10. Evans, R. B. in The Maximum Entropy Formalism; 15 (eds Levine, R. D. & Tribus, M.) (MIT Press, 1979).

    Google Scholar 

  11. Kullback, S. Information Theory and Statistics (Wiley, New York, 1959).

    MATH  Google Scholar 

  12. Fry, J. N., Olive, K. A. & Turner, M. S. Phys. Rev. D22, 2953 (1980); D22, 2977 (1980).

    ADS  CAS  Google Scholar 

  13. Kolb, E. W. & Wolfram, S. Phys. Lett. 91B, 217 (1980); Nucl. Phys. B172, 224 (1980).

    Article  Google Scholar 

  14. Olive, K. A., Schramm, D. N., Steigman, G., Turner, M. S. & Yang, J. Astrophys. J. 246, 557 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Peebles, P. J. Astrophys. J. 146, 542 (1966).

    Article  ADS  Google Scholar 

  16. Wagoner, R. V., Fowler, W. A. & Hoyle, F. Astrophys. J. 148, 3 (1967).

    Article  ADS  CAS  Google Scholar 

  17. Schramm, D. N. & Wagoner, R. V. A. Rev. nucl. Sci. 27, 37 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Dyson, F. J. Scient. Am. 225, 50 (1971).

    Article  CAS  Google Scholar 

  19. Landau, L. D. & Lifschitz, E. M. Statistical Physics, 340–343 (Pergamon, Oxford, 1959).

    Google Scholar 

  20. Hoyle, F. & Fowler, W. Nature 197, 533 (1963).

    Article  ADS  Google Scholar 

  21. Langacker, P. Phys. Rep. 72, 187 (1981).

    Article  ADS  Google Scholar 

  22. Sakharov, A. JETP Lett. 5, 24 (1967).

    ADS  Google Scholar 

  23. Yoshimura, M. Phys. Rev. Lett. 41, 281 (1978).

    Article  ADS  CAS  Google Scholar 

  24. Ignatiev, A., Kranikov, N., Kuzmin, V. & Tankhelidze, A. Phys. Lett. 76B, 436 (1978).

    Article  Google Scholar 

  25. Dimopoulos, S. & Susskind, L. Phys. Rev. D18, 4500 (1979).

    Google Scholar 

  26. Ellis, J., Gaillard, M. K. & Nanopoulos, D. V. Phys. Lett. 80B, 360 (1978); 82B, 464 (1979).

    Article  Google Scholar 

  27. Weinberg, S. Phys. Rev. Lett. 42, 850 (1979).

    Article  ADS  CAS  Google Scholar 

  28. Toussaint, D., Treiman, S. B., Wilczek, F. & Zee, A. Phys. Rev. D19, 1036 (1979).

    ADS  CAS  Google Scholar 

  29. Nonopoulos, D. V. & Wienberg, S. Phys. Rev. D20, 2484 (1979).

    ADS  Google Scholar 

  30. Kolb, E. W. & Wolfram, S. Phys. Lett. 91B, 217 (1980).

    Article  Google Scholar 

  31. Ellis, J., Gaillard, M. K., Nanopoulos, N. V. & Rudaz, S. Nucl. Phys. B176, 61 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, KE., Islam, S. & Skagerstam, BS. A model for the cosmic creation of nuclear exergy. Nature 296, 540–542 (1982). https://doi.org/10.1038/296540a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296540a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing