Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for the lipidic nature of tight junction strands

Abstract

We examine here the proposition that membrane lipids1–4, rather than intrinsic membrane proteins5–7, are the principal structural elements of the strands comprising tight junctions. Our evidence, which is based on direct rapid freezing of newly formed tight junctions between rat prostate epithelial cells, indicates that individual tight junction strands are pairs of inverted cylindrical micelles sandwiched between linear fusions of the external membrane leaflets of adjacent cells. Although individual tight junction strands appear as continuous cylinders when fractured near the frozen surface, where ice crystals have not damaged the plasma membrane, they appear as rows of particles when fractured deeper in the frozen tissue. We now interpret these tight junction particles as remnants of intramembrane cylinders disrupted during freezing The morphology and dimensions of the intact cylinders correspond to those of lipids in the cylindrical hexagonal II phase8,9 and this suggests that tight junction formation requires a phase transition of the planar lipid bilayer similar to that invoked in models of membrane fusion10,11. Our morphological interpretation explains the known functional properties of tight junctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Verkleij, A. J. Proc. Electron Microsc. Soc. Am. 38, 688–691 (1980).

    Google Scholar 

  2. Kachar, B. & Pinto da Silva, P. Science 213, 541–544 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Kachar, B. & Reese, T. S. J. Cell Biol. 91, 123a (1981).

    Google Scholar 

  4. Pinto da Silva, P. & Kachar, B. Cell (in the press).

  5. Staehelin, L. A. Int. Rev. Cytol. 39, 191–283 (1974).

    Article  CAS  Google Scholar 

  6. Bullivant, S. in Electron Microscopy IX (ed. Sturgess, J. M.) 659–672 (Microscopical Society of Canada, Toronto, 1978).

    Google Scholar 

  7. Van Deurs, B. & Luft, J. H. J. ultrastruct. Res. 68, 160–172 (1979).

    Article  CAS  Google Scholar 

  8. Deamer, D. W., Leonard, R., Tardieu, A. & Branton, D. Biochim. biophys. Acta 219, 47–60 (1970).

    Article  CAS  Google Scholar 

  9. Rand, R. P. & Sengupta, S. Biochim. biophys. Acta 255, 484–492 (1979).

    Article  Google Scholar 

  10. Cullis, P. R. & Hope, M. J. Nature 271, 672–674 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Verkleij, A. J., Mombers, C., Gerritsen, W. J., Lennissen-Bijvelt, L. & Cullis, P. R. Biochim. biophys. Acta 555, 358–361 (1979).

    Article  CAS  Google Scholar 

  12. Staehelin, L. A. J. Cell Sci. 13, 763–786 (1973).

    CAS  PubMed  Google Scholar 

  13. Montesano, R., Friend, D. S., Perrelet, A. & Orci, L. J. Cell Biol. 67, 310–319 (1975).

    Article  CAS  Google Scholar 

  14. Simionescu, M. & Simionescu, N. J. Cell Biol. 74, 98–110 (1977).

    Article  CAS  Google Scholar 

  15. Montesano, R. Anat. Rec. 198, 403–414 (1980).

    Article  CAS  Google Scholar 

  16. Weinbaum, S. J. theor. Biol. 83, 63–92 (1980).

    Article  CAS  Google Scholar 

  17. Heuser, J. E. et al. J. Cell Biol. 81, 275–300 (1979).

    Article  CAS  Google Scholar 

  18. Wade, J. B. & Karnovsky, M. J. J. Cell Biol. 60, 168–180 (1974).

    Article  CAS  Google Scholar 

  19. Verkleij, A. J. & Ververgaert, P. Biochim. biophys. Acta 515, 303–327 (1978).

    Article  CAS  Google Scholar 

  20. Verkleij, A. J., Mombers, C., Lennissen-Bijvelt, Y. & Ververgaert, P. Nature 279, 162–163 (1979).

    Article  ADS  CAS  Google Scholar 

  21. DeKruijff, B. Biochim. biophys. Acta 555, 200–209 (1973).

    Article  Google Scholar 

  22. Miller, R. G. Nature 287, 166–167 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Rand, R. P., Reese, T. S. & Miller, R. G. Nature 293, 237–238 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Sen, A., Williams, W. P., Brain, A. P. R., Dickens, M. J. & Quinn, P. J. Nature 293, 488–490 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Hui, S. W., Stewart, T. P., Yeagle, P. L. & Albert, A. D. Archs Biochem. Biophys. 207, 227–240 (1981).

    Article  CAS  Google Scholar 

  26. Cullis, P. R. & DeKruijff, B. Biochim. biophys. Acta 559, 399–420 (1979).

    Article  CAS  Google Scholar 

  27. Parsegian, V. A., Fuller, N. & Rand, R. P. Proc. natn. Acad. Sci. U.S.A. 76, 2750–2754 (1979).

    Article  ADS  CAS  Google Scholar 

  28. Meza, I., Ibarra, G., Sabanero, M., Martinez-Palomo, A. & Cereijido, M. J. Cell Biol. 87, 746–754 (1980).

    Article  CAS  Google Scholar 

  29. Brightman, M. W. & Reese, T. S. J. Cell Biol. 40, 648–677 (1969).

    Article  CAS  Google Scholar 

  30. Friend, D. S. & Gilula, N. B. J. Cell Biol. 53, 758–776 (1972).

    Article  CAS  Google Scholar 

  31. Dragsten, P. R., Blumenthal, R. & Handler, J. S. Nature 294, 718–722 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachar, B., Reese, T. Evidence for the lipidic nature of tight junction strands. Nature 296, 464–466 (1982). https://doi.org/10.1038/296464a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296464a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing