Letter | Published:

Evidence for the lipidic nature of tight junction strands

Nature volume 296, pages 464466 (01 April 1982) | Download Citation

Subjects

Abstract

We examine here the proposition that membrane lipids1–4, rather than intrinsic membrane proteins5–7, are the principal structural elements of the strands comprising tight junctions. Our evidence, which is based on direct rapid freezing of newly formed tight junctions between rat prostate epithelial cells, indicates that individual tight junction strands are pairs of inverted cylindrical micelles sandwiched between linear fusions of the external membrane leaflets of adjacent cells. Although individual tight junction strands appear as continuous cylinders when fractured near the frozen surface, where ice crystals have not damaged the plasma membrane, they appear as rows of particles when fractured deeper in the frozen tissue. We now interpret these tight junction particles as remnants of intramembrane cylinders disrupted during freezing The morphology and dimensions of the intact cylinders correspond to those of lipids in the cylindrical hexagonal II phase8,9 and this suggests that tight junction formation requires a phase transition of the planar lipid bilayer similar to that invoked in models of membrane fusion10,11. Our morphological interpretation explains the known functional properties of tight junctions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Proc. Electron Microsc. Soc. Am. 38, 688–691 (1980).

  2. 2.

    & Science 213, 541–544 (1981).

  3. 3.

    & J. Cell Biol. 91, 123a (1981).

  4. 4.

    & Cell (in the press).

  5. 5.

    Int. Rev. Cytol. 39, 191–283 (1974).

  6. 6.

    in Electron Microscopy IX (ed. Sturgess, J. M.) 659–672 (Microscopical Society of Canada, Toronto, 1978).

  7. 7.

    & J. ultrastruct. Res. 68, 160–172 (1979).

  8. 8.

    , , & Biochim. biophys. Acta 219, 47–60 (1970).

  9. 9.

    & Biochim. biophys. Acta 255, 484–492 (1979).

  10. 10.

    & Nature 271, 672–674 (1978).

  11. 11.

    , , , & Biochim. biophys. Acta 555, 358–361 (1979).

  12. 12.

    J. Cell Sci. 13, 763–786 (1973).

  13. 13.

    , , & J. Cell Biol. 67, 310–319 (1975).

  14. 14.

    & J. Cell Biol. 74, 98–110 (1977).

  15. 15.

    Anat. Rec. 198, 403–414 (1980).

  16. 16.

    J. theor. Biol. 83, 63–92 (1980).

  17. 17.

    et al. J. Cell Biol. 81, 275–300 (1979).

  18. 18.

    & J. Cell Biol. 60, 168–180 (1974).

  19. 19.

    & Biochim. biophys. Acta 515, 303–327 (1978).

  20. 20.

    , , & Nature 279, 162–163 (1979).

  21. 21.

    Biochim. biophys. Acta 555, 200–209 (1973).

  22. 22.

    Nature 287, 166–167 (1980).

  23. 23.

    , & Nature 293, 237–238 (1981).

  24. 24.

    , , , & Nature 293, 488–490 (1981).

  25. 25.

    , , & Archs Biochem. Biophys. 207, 227–240 (1981).

  26. 26.

    & Biochim. biophys. Acta 559, 399–420 (1979).

  27. 27.

    , & Proc. natn. Acad. Sci. U.S.A. 76, 2750–2754 (1979).

  28. 28.

    , , , & J. Cell Biol. 87, 746–754 (1980).

  29. 29.

    & J. Cell Biol. 40, 648–677 (1969).

  30. 30.

    & J. Cell Biol. 53, 758–776 (1972).

  31. 31.

    , & Nature 294, 718–722 (1981).

Download references

Author information

Affiliations

  1. Section on Functional Neuroanatomy, Laboratory of Neuropathology and Neuroanatomical Sciences, National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20205, USA

    • Bechara Kachar
    •  & Thomas S. Reese

Authors

  1. Search for Bechara Kachar in:

  2. Search for Thomas S. Reese in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/296464a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.