Site-specific mutagenesis by error-directed DNA synthesis

Abstract

An important experimental strategy for defining functional regions of a DNA sequence involves deleting or mutating particular sequences in vitro and observing the effects of the changes in a functional assay. We have approached the problem of making specific changes at defined sites in a nucleotide sequence by attempting to make use of the mistakes made by DNA polymerase enzymes while copying a sequence. Our approach is to initiate DNA synthesis from an isolated restriction fragment, and to elongate the fragment to a designated position by sequentially adding complementary nucleotides, then to incorporate the non-complementary nucleotide using an error-prone DNA polymerase followed by continuation of faithful synthesis. Here we demonstrate by DNA sequence analysis that both transitions and transversions can be produced at a designated position on the DNA template using this method.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Brutlag, D. & Kornberg, A. J. biol. Chem. 247, 241–248 (1972).

  2. 2

    Battula, N. & Loeb, L. A. J. biol. Chem. 249, 4086–4093 (1974).

  3. 3

    Kunkel, T. A. & Loeb, L. A. Science 213, 765–766 (1981).

  4. 4

    Kunkel, T. A. & Loeb, L. A. J. biol. Chem. 254, 5718–5725 (1979).

  5. 5

    Kunkel, T. A. & Loeb, L. A. J. biol. Chem. 255, 9961–9966 (1980).

  6. 6

    Sanger, F. et al. J. molec. Biol. 125, 225–246 (1978).

  7. 7

    Smith, M., Brown, N. L., Air, G. M., Barrell, B. G. & Coulson, A. R. Nature 265, 702–705 (1977).

  8. 8

    Weymouth, L. A. & Loeb, L. A. Proc. natn. Acad. Sci. U.S.A. 75, 1924–1928 (1978).

  9. 9

    Gopinathan, K. P., Weymouth, L. A., Kunkel, T. A. & Loeb, L. A. Nature 278, 857–859 (1979).

  10. 10

    Topal, M. D. & Fresco, J. R. Nature 263, 285–289 (1976).

  11. 11

    Fersht, A. R. & Knill-Jones, J. W. Proc. natn. Acad. Sci. U.S.A. 78, 4251–4255 (1981).

  12. 12

    Donelson, J. E. & Wu, R. J. biol. Chem. 247, 4654–4660 (1972).

  13. 13

    Battula, N. & Loeb, L. A. J. biol. Chem. 251, 982–986 (1976).

  14. 14

    Kunkel, T. A., Eckstein, F., Mildvan, A. S., Koplitz, R. M. & Loeb, L. A. Proc. natn. Acad. Sci. U.S.A. 78, 6734–6738 (1981).

  15. 15

    Hutchison, C. A. et al. J. biol. Chem. 253, 6551–6560 (1978).

  16. 16

    Razin, A., Hirose, T., Itakura, K. & Riggs, A. D. Proc. natn. Acad. Sci. U.S.A. 75, 4268–4270 (1978).

  17. 17

    Bhanot, O. S., Kahn, S. A. & Chambers, R. W. J. biol. Chem. 254, 12684–12693 (1979).

  18. 18

    Astell, C. R. & Smith, M. Biochemistry 11, 4114–4120 (1972).

  19. 19

    Shortle, D. & Nathans, D. Proc. natn. Acad. Sci. U.S.A. 75, 2170–2174 (1978).

  20. 20

    Shortle, D., Pipas, J., Lazarowitz, S., DiMaio, D. & Nathans, D. in Genetic Engineering, Principles and Methods Vol. l (eds Setlow, J. K. & Hollaender, A.) 73–92 (Plenum, New York, 1979).

  21. 21

    Müller, W., Weber, H., Meyer, F. & Weissmann, C. J. molec. Biol. 124, 343–358 (1978).

  22. 22

    Weissmann, C., Nagata, S., Taniguchi, T., Weber, H. & Meyer, F. in Genetic Engineering, Principles and Methods Vol. 1 (eds Setlow, J. K. & Hollaender, A.) 133–150 (Plenum, New York, 1979).

  23. 23

    Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.