Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Site-specific mutagenesis by error-directed DNA synthesis

Abstract

An important experimental strategy for defining functional regions of a DNA sequence involves deleting or mutating particular sequences in vitro and observing the effects of the changes in a functional assay. We have approached the problem of making specific changes at defined sites in a nucleotide sequence by attempting to make use of the mistakes made by DNA polymerase enzymes while copying a sequence. Our approach is to initiate DNA synthesis from an isolated restriction fragment, and to elongate the fragment to a designated position by sequentially adding complementary nucleotides, then to incorporate the non-complementary nucleotide using an error-prone DNA polymerase followed by continuation of faithful synthesis. Here we demonstrate by DNA sequence analysis that both transitions and transversions can be produced at a designated position on the DNA template using this method.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brutlag, D. & Kornberg, A. J. biol. Chem. 247, 241–248 (1972).

    CAS  PubMed  Google Scholar 

  2. Battula, N. & Loeb, L. A. J. biol. Chem. 249, 4086–4093 (1974).

    CAS  PubMed  Google Scholar 

  3. Kunkel, T. A. & Loeb, L. A. Science 213, 765–766 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kunkel, T. A. & Loeb, L. A. J. biol. Chem. 254, 5718–5725 (1979).

    CAS  PubMed  Google Scholar 

  5. Kunkel, T. A. & Loeb, L. A. J. biol. Chem. 255, 9961–9966 (1980).

    CAS  PubMed  Google Scholar 

  6. Sanger, F. et al. J. molec. Biol. 125, 225–246 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Smith, M., Brown, N. L., Air, G. M., Barrell, B. G. & Coulson, A. R. Nature 265, 702–705 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Weymouth, L. A. & Loeb, L. A. Proc. natn. Acad. Sci. U.S.A. 75, 1924–1928 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Gopinathan, K. P., Weymouth, L. A., Kunkel, T. A. & Loeb, L. A. Nature 278, 857–859 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Topal, M. D. & Fresco, J. R. Nature 263, 285–289 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Fersht, A. R. & Knill-Jones, J. W. Proc. natn. Acad. Sci. U.S.A. 78, 4251–4255 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Donelson, J. E. & Wu, R. J. biol. Chem. 247, 4654–4660 (1972).

    CAS  PubMed  Google Scholar 

  13. Battula, N. & Loeb, L. A. J. biol. Chem. 251, 982–986 (1976).

    CAS  PubMed  Google Scholar 

  14. Kunkel, T. A., Eckstein, F., Mildvan, A. S., Koplitz, R. M. & Loeb, L. A. Proc. natn. Acad. Sci. U.S.A. 78, 6734–6738 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Hutchison, C. A. et al. J. biol. Chem. 253, 6551–6560 (1978).

    CAS  PubMed  Google Scholar 

  16. Razin, A., Hirose, T., Itakura, K. & Riggs, A. D. Proc. natn. Acad. Sci. U.S.A. 75, 4268–4270 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Bhanot, O. S., Kahn, S. A. & Chambers, R. W. J. biol. Chem. 254, 12684–12693 (1979).

    CAS  PubMed  Google Scholar 

  18. Astell, C. R. & Smith, M. Biochemistry 11, 4114–4120 (1972).

    Article  CAS  PubMed  Google Scholar 

  19. Shortle, D. & Nathans, D. Proc. natn. Acad. Sci. U.S.A. 75, 2170–2174 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Shortle, D., Pipas, J., Lazarowitz, S., DiMaio, D. & Nathans, D. in Genetic Engineering, Principles and Methods Vol. l (eds Setlow, J. K. & Hollaender, A.) 73–92 (Plenum, New York, 1979).

    Google Scholar 

  21. Müller, W., Weber, H., Meyer, F. & Weissmann, C. J. molec. Biol. 124, 343–358 (1978).

    Article  PubMed  Google Scholar 

  22. Weissmann, C., Nagata, S., Taniguchi, T., Weber, H. & Meyer, F. in Genetic Engineering, Principles and Methods Vol. 1 (eds Setlow, J. K. & Hollaender, A.) 133–150 (Plenum, New York, 1979).

    Google Scholar 

  23. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakour, R., Loeb, L. Site-specific mutagenesis by error-directed DNA synthesis. Nature 295, 708–710 (1982). https://doi.org/10.1038/295708a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295708a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing