GPI-anchored proteins are organized in submicron domains at the cell surface


Lateral heterogeneities in the classical fluid-mosaic model of cell membranes are now envisaged as domains or ‘rafts’ that are enriched in (glyco)sphingolipids, cholesterol, specific membrane proteins and glycosylphosphatidylinositol (GPI)-anchored proteins1. These rafts dictate the sorting of associated proteins and/or provide sites for assembling cytoplasmic signalling molecules2. However, there is no direct evidence that rafts exist in living cells3,4. We have now measured the extent of energy transfer between isoforms of the folate receptor bound to a fluorescent analogue of folic acid, in terms of the dependence of fluorescence polarization on fluorophore densities in membranes5. We find that the extent of energy transfer for the GPI-anchored folate-receptor isoform is density-independent, which is characteristic of organization in sub-pixel-sized domains at the surface of living cells; however, the extent of energy transfer for the transmembrane-anchored folate-receptor isoform was density-dependent, which is consistent with a random distribution. These domains are likely to be less than 70 nm in diameter and are disrupted by removal of cellular cholesterol. These results indicate that lipid-linked proteins are organized in cholesterol-dependent submicron-sized domains. Our methodology offers a new way of monitoring nanometre-scale association between molecules in living cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Possible outcomes of the fluorescence depolarization experiment for different arrangements of fluorescently labelled GPI-anchored proteinsin a microscope pixel.
Figure 2: Distribution of fluorescence intensity and anisotropy values at the surface of PLF-labelled FR-GPI- and FR-TM-expressing cells.
Figure 3: Anisotropy distributions at the surface of PLF-labelled cells obtained after photobleaching.
Figure 4: Effect of cholesterol depletion on the organization of GPI-anchored proteins at the surface of cells.


  1. 1

    Jacobson, K., Sheets, E. D. & Simson, R. Revisiting the fluid mosaic model of membranes. Science 268, 1441–1442 (1995).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Simons, K. & Ikonen, E. Functional rafts in membranes. Nature 387, 569–570 (1997).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Harder, T. & Simons, K. Caveolae, DIGs, and the dynamics of sphingolipid–cholesterol microdomains. Curr. Opin. Cell Biol. 9, 534–542 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Weimbs, T., Hui-Low, S., Chapin, S. J. & Mostov, K. E. Apical targeting in polarized cells: there's more afloat than rafts. Trends Cell Biol. 7, 393–399 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Weber, G. Dependence of polarization of the fluorescence on the concentration. Trans. Faraday Soc. 50, 552–555 (1954).

    CAS  Article  Google Scholar 

  6. 6

    Edidin, M. Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol. 7, 528–532 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Brown, R. E. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J. Cell Sci. 111, 1–9 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Kurzchalia, T. V., Hartmann, E. & Dupree, P. Guilt by insolubility—does a protein's detergent insolubility reflect a caveolar location? Trends Cell Biol. 5, 187–189 (1995).

    CAS  PubMed  Google Scholar 

  9. 9

    Mayor, S. & Maxfield, F. R. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol. Biol. Cell 6, 929–944 (1995).

    CAS  Article  Google Scholar 

  10. 10

    McConville, M. J. & Ferguson, M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem. J. 294, 305–324 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Mayor, S., Rothberg, K. G. & Maxfield, F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951 (1994).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Parton, R. G., Joggerst, B. & Simons, K. Regulated internalization of caveolae. J. Cell Biol. 127, 1199–1215 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Fujimoto, T. GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem. 44, 929–941 (1996).

    CAS  Article  Google Scholar 

  14. 14

    Brown, D. The tyrosine kinase connection: how GPI-anchored proteins activate T cells. Curr. Opin. Immunol. 5, 349–354 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Griffiths, G. Fine Structure Immunochemistry 1–459 (Springer, Heidelberg, (1993)).

    Google Scholar 

  16. 16

    Simson, al. Structural mosaicism on the submicron scale in the plasma membrane. Biophys. J. 74, 297–308 (1998).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Sheets, E. D., Lee, G. M., Simson, R. & Jacobson, K. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry 36, 12449–12458 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Kenworthy, A. K. & Eddin, M. Searching for ‘lipid rafts’ in cell membranes using fluorescence resonance energy transfer (FRET) microscopy. Biophys. J. 74, A8 (1998).

    Google Scholar 

  19. 19

    Matko, J. & Edidin, M. Energy transfer methods for detecting molecular clusters on cell surfaces. Meth. Enzymol. 278, 444–462 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Hannan, L. A., Lisanti, M. P., Rodriguez-Boulan, E. & Edidin, M. Correctly sorted molecules of a GPI-anchored protein are clustered and immobile when they arrive at the apical surface of MDCK cells. J. Cell Biol. 120, 353–358 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Runnels, L. W. & Scarlata, S. F. Theory and application of fluorescence homotransfer to melittin oligomerizaiton. Biophys. J. 69, 1569–1583 (1995).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Cerneus, D. P., Ueffing, E., Posthuma, G., Strous, G. J. & van der Ende, A. Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol. J. Biol. Chem. 268, 3150–3155 (1993).

    CAS  PubMed  Google Scholar 

  23. 23

    Hanada, K., Nishijima, M., Akamatsu, Y. & Pagano, R. E. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J. Biol. Chem. 270, 6254–6260 (1995).

    CAS  Article  Google Scholar 

  24. 24

    Taraboulos, al. Cholestrol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell Biology. 129, 121–132 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Chang, W.-J., Rothberg, K. G., Kamen, B. A. & Anderson, R. G. W. Lowering cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J. Cell Biol. 118, 63–69 (1992).

    CAS  Article  Google Scholar 

  26. 26

    Mayor, S., Sabharanjak, S. & Maxfield, F. R. Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J.(in the press).

  27. 27

    Stulnig, T. al. Signal transduction via glycosyl phosphatidylinositol-anchored proteins in T cells is inhibited by lowering cellular cholesterol. J. Biol. Chem. 272, 19242–19247 (1997).

    CAS  Article  Google Scholar 

  28. 28

    Yancey, P. al. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. J. Biol. Chem. 271, 16026–16034 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Ritter, T. E., Fajardo, O., Matsue, H., Anderson, R. G. & Lacey, S. W. Folate receptor targeted to clathrin-coated pits cannot regulate vitamin uptake. Proc. Natl Acad. Sci. USA 92, 3824–3828 (1995).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Friedrichson, T. & Kurzchalia, T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805 (1998).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Matter, K., Hunziker, W. & Mellman, I. Basolateral sorting of LDL receptor in MDCK cells: the cytoplasmic domain contains two tyrosine-dependent targeting determinants. Cell. 71, 741–753 (1992).

    CAS  Article  Google Scholar 

Download references


We thank M. K. Mathew and G. Krishnamoorthy for their insight, F. Barrantes, A. K. Menon and J. Udgaonkar for critical reading of the text, S. Chitkala and N. S. Kiran for making the FR-TM construct, and R. Priya for help with cholesterol analysis. S.M. thanks the Human Frontier Science Program and the National Centre for Biological Sciences for support, and F. F. Bosphorus for inspiration.

Author information



Corresponding author

Correspondence to Satyajit Mayor.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Varma, R., Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing