Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Excision of polyoma virus genomes from chromosomal DNA by homologous recombination

Abstract

Head-to-tail tandem duplications of DNA sequences have been observed to occur naturally in chromosomal DNA of mammalian cells1,2 and head-to-tail tandem arrays of DNA sequences can be induced upon gene amplification3,4. In these cases such sequences have not been detected as free or plasmid forms. After transformation by the two papovaviruses, polyoma and simian virus 40 (SV40), the viral DNA sequences integrated into the host chromosome are often found in head-to-tail tandem arrays5–11. When either a partially permissive environment for viral DNA replication exists (polyoma–rat or SV40–human cells) or after fusion of non-permissive transformed cells with permissive cells (polyoma–mouse or SV40–monkey cells), free viral forms are induced provided that a functional viral replication protein and a competent viral origin of DNA replication are present12. These results have led to the hypothesis that excision of integrated sequences occurs by viral DNA replication within the chromosomal DNA6,13. We show here that free polyoma molecules can be excised from partial head-to-tail duplications of integrated viral sequences in the absence of a functional viral replication protein (large T antigen [T-Ag]) after fusion of transformed rat cells (partially permissive) to permissive mouse cells. The amount of free viral forms produced appears to be proportional to the extent of duplicated integrated viral sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Long, E. O. & David, I. B. A. Rev. Biochem. 49, 727–763 (1980).

    Article  CAS  Google Scholar 

  2. Davidson, E. H. & Britten, R. J. Science 204, 1052–1059 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Humberg, J. H., Kaufman, R. J., Chang, A. C. Y., Cohen, S. M. & Schimke, R. T. Cell 19, 355–364 (1980).

    Article  Google Scholar 

  4. Wahl, G. M., Padgett, R. A. & Stark, G. R. J. biol. Chem. 254, 8679–8689 (1979).

    CAS  PubMed  Google Scholar 

  5. Birg, F., Dulbecco, R., Fried, M. & Kamen, R. J. Virol. 29, 633–648 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Basilico, C., Gattoni, S., Zouzias, D. & Delia Valle, G. Cell 17, 645–659 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. Lania, L. et al. Virology 101, 217–232 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Botchan, M., Topp, W. & Sambrook, J. Cell 9, 269–287 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Campo, M. S., Cameron, I. R. & Rodgers, M. E. Cell 15, 1411–1426 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. Keiner, G. & Kelly, T. J. Jr J. molec. Biol. 144, 163–182 (1980).

    Article  Google Scholar 

  11. Clayton, C. E. & Rigby, W. J. Cell 25, 547–559 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Tooze, J. DNA Tumour Viruses: Molecular Biology of Tumour Viruses Pt 2 (Cold Spring Harbor Laboratory, New York, 1980).

    Google Scholar 

  13. Botcham, M., Topp, W. & Sambrook, J. Cold Spring Harb. Symp. quant. Biol. 43, 709–719 (1979).

    Article  Google Scholar 

  14. Lania, L., Hayday, A., Bjursell, G., Gardini-Attardi, D. & Fried, M. Cold Spring Harb. Symp. quant. Biol. 44, 597–603 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Lania, L., Griffiths, M., Cooke, B., Ito, Y. & Fried, M. Cell 18, 793–802 (1978).

    Article  Google Scholar 

  16. Hassell, J. W., Topp, D., Rifkin, D. & Moreau, P. Proc. natn. Acad. Sci. U.S.A. 77, 3978–3982 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Novak, U., Dilworth, S. & Griffin, B. E. Proc. natn. Acad. Sci. U.S.A. 77, 525–532 (1980).

    Google Scholar 

  18. Israel, M. A., Vanderryn, D. F., Meltzer, M. L. & Martin, M. J. biol. Chem. 255, 3798–3805 (1980).

    CAS  PubMed  Google Scholar 

  19. Triesman, R., Novak, U., Favaloro, J. & Kamen, R. Nature 292, 595–600 (1981).

    Article  ADS  Google Scholar 

  20. Lania, L., Hayday, A. & Fried, M. J. Virol. 39, 422–431 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fried, M. et al. Nature 279, 811–816 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Kelly, T. J., Lewis, A. M., Levine, A. S. & Siegel, S. J. molec. Biol. 89, 113–126 (1974).

    Article  CAS  PubMed  Google Scholar 

  23. Israel, M. A., Chan, H. W., Rowe, W. P. & Martin, M. A. Science 203, 883–887 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Jaenish, R. & Levine, A. Virology 44, 480–493 (1971).

    Article  Google Scholar 

  25. Varmus, H. E., Quintrell, M. & Ortiz, S. Cell 25, 23–36 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. Smith, C. A. & Vinograd, J. J. molec. Biol. 69, 163–178 (1972).

    Article  CAS  PubMed  Google Scholar 

  27. Stonfield, S. & Helinski, D. R. Cell 9, 333–345 (1976).

    Article  Google Scholar 

  28. Pontecorvo, G. Somatic Cell Genet. 1, 397–400 (1975).

    Article  CAS  PubMed  Google Scholar 

  29. Griffin, B. E., Fried, M. & Cowie, A. Proc. natn. Acad. Sci. U.S.A. 71, 2077–2081 (1974).

    Article  ADS  CAS  Google Scholar 

  30. Hirt, B. J. molec. Biol. 26, 365–369 (1967).

    Article  CAS  PubMed  Google Scholar 

  31. Southern, E. J. molec. Biol. 98, 503–515 (1975).

    Article  CAS  PubMed  Google Scholar 

  32. Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–252 (1977).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lania, L., Boast, S. & Fried, M. Excision of polyoma virus genomes from chromosomal DNA by homologous recombination. Nature 295, 349–350 (1982). https://doi.org/10.1038/295349a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295349a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing