Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The molecular structure of d(ICpCpGpG), a fragment of right-handed double helical A-DNA

Abstract

The DNA tetramer d(ICpCpGpG) or ICCGG crystallizes as a double-stranded 4-base pair (bp) segment of an A helix. Two such tetramer helices are packed together in the crystal with local helix axes nearly coincident, simulating an 8-bp helix, and four such octamers make up the tetragonal unit cell. Restrained energy and reciprocal space refinement has led to an R factor of 20.5% at 2.1 Å resolution. The ICCGG helix has a twist corresponding to 10.7 bp per turn, a 19° base tilt and a 2.3 Å rise per base pair along the helix axis. The mean propeller twist of 18° is comparable with, and has the same rotational sense as that observed in the B-DNA dodecamer CGCGAATTCGCG at similarly high alcohol concentration. Backbone phosphate groups in A-DNA are extensively hydrated, including a network across the opening of the major groove, whereas base edge N and O groups in major and minor grooves are less hydrated than in B-DNA. The minor groove spine of hydration observed in B-DNA is totally absent. These observations of relative hydration confirm and extend the model for the B-to-A helix transition proposed earlier on the basis of the B helix structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Watson, J. D. & Crick, F. H. C. Nature 171, 737–738 (1953).

    Article  ADS  CAS  Google Scholar 

  2. Langridge, R., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F. & Hamilton, L. D. J. molec. Biol. 2, 19–37 (1960).

    Article  CAS  Google Scholar 

  3. Fuller, W., Wilkins, M. H. F., Wilson, H. R., Hamilton, L. D. & Arnott, S. J. molec. Biol. 12, 60–80 (1965).

    Article  CAS  Google Scholar 

  4. Arnott, S. in Organization and Expression of Chromosomes (eds Allfrey, V. G., Bautz, E. K. F., McCarthy, B. J., Schimke, R. T. & Tissieres, A.) 209–222 (Dahlem Konferenzen, Berlin, 1976).

    Google Scholar 

  5. Arnott, S. & Selsing, E. J. molec. Biol. 98, 265–269 (1975).

    Article  CAS  Google Scholar 

  6. Marvin, D. A., Spencer, M., Wilkins, M. H. F. & Hamilton, L. D. J. molec. Biol. 3, 547–565 (1961).

    Article  CAS  Google Scholar 

  7. Davies, D. R. & Baldwin, R. L. J. molec. Biol. 6, 251–255 (1963).

    Article  CAS  Google Scholar 

  8. Itakura, K. & Riggs, A. D. Science 209, 1401–1405 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Wing, R. M. et al. Nature 287, 755–758 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Drew, H. R. et al. Proc. natn. Acad. Sci. U.S.A. 78, 2179–2183 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Wang. A. H.-J. et al. Nature 282, 680–686 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. & Ratliff, R. L. Nature 283, 743–745 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Drew, H., Takano, T., Tanaka, S., Itakura, K. & Dickerson, R. E. Nature 286, 567–573 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Hendrickson, W. A. & Teeter, M. M. Nature 290, 107–113 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Seeman, N. C., Day, R. O. & Rich, A. Nature 253, 324–326 (1975).

    Article  ADS  CAS  Google Scholar 

  16. North, A. C. T., Phillips, D. C. & Mathews, F. S. Acta crystallogr. A24, 351–359 (1968).

    Article  Google Scholar 

  17. Rossman, M. G. Acta crystallogr. 14, 383–388 (1961).

    Article  Google Scholar 

  18. Sim, G. A. Acta crystallogr. 13, 511–512 (1960).

    Article  Google Scholar 

  19. Sim, G. A. Acta crystallogr. 17, 1072–1073 (1964).

    Article  Google Scholar 

  20. Ramachandran, G. N & Raman, S. Curr. Sci. 11, 348–351 (1956).

    Google Scholar 

  21. Jack, A. & Levitt, M. Acta crystallogr. A34, 931–935 (1976).

    Article  Google Scholar 

  22. Arnott, S. & Hukins, D. W. L. Biochem. biophys. Res. Commun. 47, 1504–1509 (1972).

    Article  CAS  Google Scholar 

  23. Seeman, N. C., Rosenberg, J. M., Suddath, F. L., Kim, J. J. P. & Rich, A. J. molec. Biol. 104, 109–144 (1976).

    Article  CAS  Google Scholar 

  24. Rosenberg, J. M., Seeman, N. C., Day, R. O. & Rich, A. J. molec. Biol. 104, 145–167 (1976).

    Article  CAS  Google Scholar 

  25. Neidel, S., Berman, H. M. & Shieh, H. S. Nature 288, 129–133 (1980).

    Article  ADS  Google Scholar 

  26. Drew, H. R. & Dickerson, R. E. J. molec. Biol. 151, 535–556 (1981).

    Article  CAS  Google Scholar 

  27. Dickerson, R. E., Drew, H. R. & Conner, B. N. in Biomolecular Stereodynamics Vol. 1 (ed. Sarma, R. H.) 1–34 (Adenine, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conner, B., Takano, T., Tanaka, S. et al. The molecular structure of d(ICpCpGpG), a fragment of right-handed double helical A-DNA. Nature 295, 294–299 (1982). https://doi.org/10.1038/295294a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295294a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing