Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female

Abstract

The rapid evolution1 and maternal mode of inheritance2 of mitochondrial DNA (mtDNA) make it a valuable marker for individuals related by descent from the same female3. We report here a study of wild and inbred mice which illustrates this point. We have examined mouse mtDNA from various locales in the Northern Hemisphere using restriction enzymes that cut the molecule at an average of 150 sites and find a high level of restriction-site polymorphism in wild mice but no variation among the ‘old’ inbred strains. This result is surprising because the nuclear genomes of these strains are known to differ greatly from one another4. The old inbred type of mtDNA occurs rarely in wild mice and differs from other types in the wild by an average of 100 nucleotide substitutions. In possible contradiction of published breeding records, these findings indicate that only one female lineage contributed to the formation of all the old inbred lines. In addition, our study of new inbred strains provides genetic markers that will be useful in mouse developmental and cell biology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Brown, W. M., George, M. & Wilson, A. C. Proc. natn. Acad. Sci. U.S.A. 76, 1967–1971 (1979).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Proc. natn. Acad. Sci. U.S.A. 77, 6715–6719 (1980).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Brown, W. M. & Wright, J. W. Science 203, 1247–1249 (1979).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Staats, J. Cancer Res. 40, 2083–2128 (1980).

    CAS  PubMed  Google Scholar 

  5. 5

    Marshall, J. T. & Sage, R. D. in Biology of the House Mouse (ed. Berry, R. J.) 15–25 (Academic, London, 1981).

    Google Scholar 

  6. 6

    Sage, R. D. in The Mouse in Biomedical Research Vol. 1 (eds Foster, H. L., Small, J. D. & Fox, J. G.) 39–90 (Academic, New York, 1981).

    Google Scholar 

  7. 7

    Ferris, S. D., Sage, R. D. & Wilson, A. C. Genetics (in the press).

  8. 8

    Forejt, J. & Iványi, P. Genet. Res. 24, 189–206 (1974).

    CAS  Article  Google Scholar 

  9. 9

    Nei, M. & Li, W.-H. Proc. natn. Acad. Sci. U.S.A. 76, 5269–5273 (1979).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W. & Clayton, D. A. Cell 26, 167–180 (1981).

    CAS  Article  Google Scholar 

  11. 11

    Upholt, W. B. & Dawid, I. B. Cell 11, 571–583 (1977).

    CAS  Article  Google Scholar 

  12. 12

    Avise, J. C., Lansman, R. A. & Shade, R. O. Genetics 92, 279–295 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Avise, J. C., Giblin-Davidson, C., Laerm, J., Patton, J. C. & Lansman, R. A. Proc. natn. Acad. Sci. U.S.A. 76, 6694–6698 (1979).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Brown, G. G. & Simpson, M. V. Genetics 97, 125–143 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Ferris, S. D., Brown, W. M., Davidson, W. S. & Wilson, A. C. Proc. natn. Acad. Sci U.S.A. 78, 6319–6323 (1981).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Yonekawa, H. et al. Genetics (in the press).

  17. 17

    Yonekawa, H. et al. Jap. J. Genet. 55, 289–296 (1980).

    Article  Google Scholar 

  18. 18

    King, B., Shade, R. O. & Lansman, R. A. Plasmid 5, 313–328 (1981).

    CAS  Article  Google Scholar 

  19. 19

    Sage, R. D. in Origins of Inbred Mice (ed. Morse, H. C. III) 519–553 (Academic, New York, 1978).

    Google Scholar 

  20. 20

    Berry, R. J., Sage, R. D., Lidicker, W. Z. & Jackson, W. B. J. Zool. 193, 391–404 (1981).

    CAS  Article  Google Scholar 

  21. 21

    Nadeau, J. H., Wakeland, E. K., Götze, D. & Klein, J. Genet. Res. 37, 17–31 (1981).

    CAS  Article  Google Scholar 

  22. 22

    Morse, H. C. III in Origins of Inbred Mice (ed. Morse, H. C. III) 3–21 (Academic, New York, 1978).

  23. 23

    Keeler, C. E. The Laboratory Mouse. Its Origin, Heredity, and Culture (Harvard University Press, Cambridge, 1931).

    Google Scholar 

  24. 24

    Lynch, C. J. Lab. Anim. Care 19, 214–220 (1969).

    CAS  Google Scholar 

  25. 25

    Festing, M. F. W. Inbred Strains in Biomedical Research (Oxford University Press, New York, 1979).

    Google Scholar 

  26. 26

    Hunt, W. G. & Seiander, R. K. Heredity 31, 11–33 (1973).

    CAS  Article  Google Scholar 

  27. 27

    Brown, W. M. Proc. natn. Acad. Sci. U.S.A. 77, 3605–3609 (1980).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Thaler, L., Bonhomme, F. & Britton-Davidian, J. in Biology of the House Mouse (ed. Berry, R. J.) 27–41 (Academic, London, 1981).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferris, S., Sage, R. & Wilson, A. Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 295, 163–165 (1982). https://doi.org/10.1038/295163a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing