Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA sequences necessary for transcription of the rabbit β-globin gene in vivo

Abstract

The DNA sequences required for the expression of the rabbit β-globin gene in vivo have been examined. A variety of mutant rabbit β-globin gene templates were linked to a simian virus 40–plasmid recombinant and introduced into HeLa cells; in these conditions the rabbit β-globin gene is expressed from its own promoter. Comparison of the level of β-globin transcripts in a variety of deletion mutants shows that for efficient transcription, both the ATA or Goldberg–Hogness box, and a region between 100 and 58 base pairs in front of the site at which transcription is initiated, are required. Deletion of either of these regions results in a decrease in the level of β-globin transcripts by an order of magnitude; deletion of the ATA box causes an additional loss in the specificity of the site of initiation of RNA synthesis. The DNA sequences downstream from the ATA box, including the natural β-globin mRNA cap site, are dispensable for transcription in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Proudfoot, N. J. Nature 279, 376 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Cannon, F. et al. Nature 278, 428–434 (1979).

    Article  ADS  Google Scholar 

  3. Benoist, C., O'Hare, K., Breathnach, R. & Chambon, P. Nucleic Acids Res. 8, 127–142 (1980).

    Article  CAS  Google Scholar 

  4. Efstratiadis, A. et al. Cell 21, 653–668 (1980).

    Article  CAS  Google Scholar 

  5. Ziff, E. & Evans, R. Cell 15, 1463–1475 (1978).

    Article  CAS  Google Scholar 

  6. Contreras, R. & Fiers, W. Nucleic Acids Res. 9, 215–236 (1981).

    Article  CAS  Google Scholar 

  7. Weil, P. A., Luse, D. S., Segall, J. & Roeder, R. G. Cell 18, 469–484 (1979).

    Article  CAS  Google Scholar 

  8. Manley, J. L., Fire, A., Cano, A., Sharp, P. A. & Gefter, M. L. Proc. natn. Acad. Sci. U.S.A. 77, 3855–3859 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Corden, J. et al. Science 209, 1406–1414 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Hu, S. L. & Manley, J. Proc. natn. Acad. Sci. U.S.A. 78, 820–824 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Wasylyk, B., Kedinger, C., Corden, J., Brison, O. & Chambon, P. Nature 285, 388–390 (1980).

    Article  Google Scholar 

  12. Grosveld, G. C., Shewmaker, C. K., Jat, P. & Flavell, R. A. Cell 25, 215–226 (1981).

    Article  CAS  Google Scholar 

  13. Benoist, C. & Chambon, P. Nature 290, 304–310 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Grosschedl, R. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 77, 1432–1436 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Grosschedl, R. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 77, 7102 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Mantei, N., Boll, W. & Weissmann, C. Nature 281, 40–46 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Hamer, D. H., Kachler, M. & Leder, P. Cell 21, 697–708 (1980).

    Article  CAS  Google Scholar 

  18. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  Google Scholar 

  19. Weaver, R. F. & Weissmann, C. Nucleic Acids Res. 6, 1175–1193 (1979).

    Article  Google Scholar 

  20. Banerji, J., Rusconi, S. & Schaffner, W. Cell (in the press).

  21. Fiers, W. et al. Nature 273, 113–120 (1978).

    Article  ADS  CAS  Google Scholar 

  22. van Heuverswijn, H. & Fiers, W. Eur. J. Biochem. 100, 51–60 (1979).

    Article  Google Scholar 

  23. Wold, B. et al. Proc. natn. Acad. Sci. U.S.A. 76, 5684–5688 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Dierks, P., van Ooyen, A., Mantei, N. & Weissmann, C. Proc. natn. Acad. Sci. U.S.A. 78, 1411–1415 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Mathis, D. J. & Chambon, P. Nature 290, 310–315 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Bernards, R. & Flavell, R. A. Nucleic Acids Res. 8, 1521–1534 (1980).

    Article  CAS  Google Scholar 

  27. Wigler, M. et al. Cell 16, 777–785 (1979).

    Article  CAS  Google Scholar 

  28. Auffray, C. & Rougeon, F. Eur. J. Biochem. 107, 303–314 (1980).

    Article  CAS  Google Scholar 

  29. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosveld, G., de Boer, E., Shewmaker, C. et al. DNA sequences necessary for transcription of the rabbit β-globin gene in vivo. Nature 295, 120–126 (1982). https://doi.org/10.1038/295120a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295120a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing