Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gramicidin forms multi-state rectifying channels

Abstract

Gramicidin A is a pentadecapeptide of alternating L and D amino acids1. In membranes it forms cation conductive channels2 of molecular dimensions3,4 that in many respects resemble2–7 the channels of excitable cells8,9. For this reason, and also because its structure is well established1,10,11, the gramicidin channel is regarded as a useful model of ion channels in cell membranes. Although the properties of the gramicidin channel have been studied extensively12, it has generally been described as having a single state associated with a sharply defined conductance that remains unaltered during the lifetime of the channel13. We report here that, in fact, gramicidin A can assume other, less conductive ‘miniature’ (mini) states evidenced by our observations of spontaneous transitions in the conductance of single open channels and the observation of a significant number of weakly conducting channels. Current–voltage (I–V) relationships for different channel states differ significantly and, for minis, are often asymmetrical. Our results indicate that the gramicidin channel has a wide variety of stable conf ormational states that give rise to channels with different electrical properties. Because transitions between states occur relatively infrequently, these conf ormational states must be separated by relatively large energies of interconversion. Similar transitions, poised by the electric field or an agonist molecule, may underlie the function of gated channels in cell membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sarges, R. & Witkop, B. J. Am. chem. Soc. 86, 1862–1863 (1964).

    Article  CAS  Google Scholar 

  2. Myers, V. B. & Haydon, D. A. Biochim. biophys. Acta 274, 313–322 (1972).

    Article  CAS  Google Scholar 

  3. Urry, D. W. Proc. natn. Acad. Sci. U.S.A. 68, 672–676 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Urry, D. W., Goodall, M. C., Glickson, J. D. & Mayers, F. D. Proc. natn. Acad. Sci. U.S.A. 68, 1907–1911 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Neher, E., Sandblom, J. & Eisenman, G. J. Membrane Biol. 40, 97–116 (1978).

    Article  CAS  Google Scholar 

  6. Hladky, S. B. & Haydon, D. A. Biochim. biophys. Acta 274, 294–312 (1972).

    Article  CAS  Google Scholar 

  7. Shagina, L., Grinfeldt, A. E. & Lev, A. A. Nature 273, 243–245 (1978).

    Article  ADS  Google Scholar 

  8. Begenisich, T. B. & Cahalan, M. D. J. Physiol., Lond. 307, 217–242 (1980).

    Article  CAS  Google Scholar 

  9. Hodgkin, A. L. & Keynes, R. D. J. Physiol., Lond. 128, 61–88 (1955).

    Article  CAS  Google Scholar 

  10. Urry, D. W. in Conformation of Biological Molecules and Polymers—The Jerusalem Symp. on Quantum Chemistry and Biochemistry Vol. 5, 723–736 (Jerusalem Academy of Sciences, 1973).

    Google Scholar 

  11. Koeppe, R. E., Hodgson, K. O. & Stryer, L. J. molec. Biol. 121, 41–54 (1978).

    Article  CAS  Google Scholar 

  12. Bamberg, E. et al. Fedn Proc. 37, 2633–2638 (1978).

    CAS  Google Scholar 

  13. Haydon, D. A. & Hladky, S. B. Q. Rev. Biophys. 5, 187–282 (1972).

    Article  CAS  Google Scholar 

  14. Gross, E. & Witkop, B. Biochemistry 4, 2495–2501 (1965).

    Article  CAS  Google Scholar 

  15. White, S. Biophys. J. 23, 337–347 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Apell, H.-J., Bamberg, E., Alpes, H. & Läuger, P. J. Membrane Biol. 31, 171–181 (1977).

    Article  CAS  Google Scholar 

  17. Frohlich, O. J. Membrane Biol. 48, 365–383 (1979).

    Article  CAS  Google Scholar 

  18. Hladky, S. B. & Haydon, D. A. Nature 225, 451–453 (1970).

    Article  ADS  CAS  Google Scholar 

  19. Bamberg, E. & Läuger, P. Biochim. biophys. Acta 367, 127–133 (1974).

    Article  CAS  Google Scholar 

  20. Prasad, K. U., Trapane, T. L., Busath, D., Szabo, G. & Urry, D. W. Int. J. Peptide Protein Res. 18 (in the press).

  21. Bamberg, E., Noda, K., Gross, E. & Läuger, P. Biochim. biophys. Acta 419, 223–228 (1976).

    Article  CAS  Google Scholar 

  22. Bamberg, E. & Läuger, P. J. Membrane Biol. 11, 177–194 (1973).

    Article  CAS  Google Scholar 

  23. Veatch, W. R., Mathies, R., Eisenberg, M. & Stryer, L. J. molec. Biol. 99, 75–92 (1975).

    Article  CAS  Google Scholar 

  24. Bamberg, E., Appel, H.-J. & Alpes, H. Proc. natn. Acad. Sci. U.S.A. 74, 2402–2406 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Bamberg, E. et al. J. Membrane Biol. 50, 257–270 (1979).

    Article  CAS  Google Scholar 

  26. Veatch, W. R., Fossel, E. T. & Blout, E. R. Biochemistry 13, 5249–5256 (1974).

    Article  CAS  Google Scholar 

  27. Ochinnikov, Y. A. Eur. J. Biochem. 94, 321–336 (1979).

    Article  Google Scholar 

  28. Urry, D. W., Venkatachalam, C. M. & Prasad, K. U. J. Quantum Chem., Quantum Biol. Symp. 8 (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busath, D., Szabo, G. Gramicidin forms multi-state rectifying channels. Nature 294, 371–373 (1981). https://doi.org/10.1038/294371a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294371a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing