Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolution of rRNA and origin of mitochondria

Abstract

The origin of mitochondria has remained a matter of discussion and speculation since Altmann first proposed the endosymbiont hypothesis in 18901. Mitochondria may have arisen by the invasion of aerobic2,3 or anaerobic photosynthetic4 bacteria into ancestral protokaryotic cells, or in a non-symbiotic fashion by compartmentalization of episomal DNA5,6. We have now tested these hypotheses by comparing nucleotide sequences of small ribosomal subunit RNA (S-rRNA) genes from mitochondria of Aspergillus nidulans, yeast7, man8 and mouse9, from nuclei of yeast10 and animals11–13, and from Escherichia coli14 and maize chloroplasts15. All rRNA molecules deduced from gene sequences share several regions of conserved primary and potential secondary structure. An evolutionary tree analysis of gene sequences supports the endosymbiotic eubacterial origin of fungal mitochondria and further suggests an independent bacterial origin of animal mitochondria.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Altmann, R. Die Elementarorganismen und ihre Beziehungen zu den Zellen (Veit, Leipzig, 1890).

    Google Scholar 

  2. 2

    Margulis, L. Origin of Eukaryotic Cells (Yale University Press, New Haven, 1970).

    Google Scholar 

  3. 3

    Schwartz, R. M. & Dayhoff, M. O. Science 199, 359–403 (1978).

    Article  Google Scholar 

  4. 4

    Woese, C. R. J. molec. Evol. 10, 93–96 (1977).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Raff, R. A. & Mahler, H. R. Science 177, 575–582 (1972).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Uzzell, T. & Spolsky, C. Am. Scient. 62, 334–343 (1974).

    ADS  CAS  Google Scholar 

  7. 7

    Sor, R. & Fukuhara, H. C.r. Acad. Sci., Paris, D291, 933–936 (1980).

    CAS  Google Scholar 

  8. 8

    Eperon, I. C., Anderson, S. & Nierlich, D. P. Nature 286, 460–467 (1980).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Van Etten, R. A., Walberg, M. W. & Clayton, D. A. Cell 22, 157–170 (1980).

    CAS  Article  Google Scholar 

  10. 10

    Rubtsov, P. M. et al. Nucleic Acids Res. 8, 5779–5794 (1980).

    CAS  Article  Google Scholar 

  11. 11

    Salim, M. & Maden, E. H. Nature 291, 205–208 (1981).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Jordan, B. R., Latil-Damotte, M. & Jourdan, R. FEBS Lett. 117, 227–231 (1980).

    CAS  Article  Google Scholar 

  13. 13

    Samols, D. R., Hagenbüchle, O. & Gage, L. P. Nucleic Acids Res. 7, 1109–1119 (1979).

    CAS  Article  Google Scholar 

  14. 14

    Brosius, J., Palmer, M. L., Kennedy, P. J. & Noller, H. F. Proc. natn. Acad. Sci. U.S.A. 75, 4801–4805 (1978).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Schwarz, Z. & Kössel, H. Nature 283, 739–742 (1980).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Köchel, H. G. & Küntzel, H. Nucleic Acids Res. (submitted).

  17. 17

    Shine, J. & Dalgarno, L. Proc. natn. Acad. Sci. U.S.A. 71, 1342–1346 (1974).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Brimacombe, R. Biochem. Int. 1, 162–171 (1980).

    CAS  Google Scholar 

  19. 19

    Carbon, P., Ehresmann, C., Ehresmann, B. & Ebel, J. P. Eur. J. Biochem. 100, 399–410 (1979).

    CAS  Article  Google Scholar 

  20. 20

    Fitch, M. W. & Margoliash, E. Science 155, 279–284 (1967).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Küntzel, H., Heidrich, M. & Piechulla, B. Nucleic Acids Res. 9, 1451–1461 (1981).

    Article  Google Scholar 

  22. 22

    Ferris, S. D., Wilson, A. C. & Brown, W. M. Proc. natn. Acad. Sci. U.S.A. 78, 2432–2436 (1981).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Arnheim, N. et al. Proc. natn. Acad. Sci. U.S.A. 77, 7323–7327 (1980).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Köchel, H. G., Lazarus, C. M., Basak, N. & Küntzel, H. Cell 23, 625–633 (1981).

    Article  Google Scholar 

  25. 25

    Borst, P. & Grivell, L. A. Nature 290, 443–444 (1981).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Küntzel, H., Köchel, H. Evolution of rRNA and origin of mitochondria. Nature 293, 751–755 (1981). https://doi.org/10.1038/293751a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing