Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of protein synthesis during heat shock

Abstract

When the cells or tissues of most eukaryotes are exposed to elevated temperatures, they respond with the vigorous induction of a small number of ‘heat shock’ proteins (hsps). I report here investigations on the responses of two very different organisms, the fruit fly Drosophila melanogaster and the yeast Saccharomyces cerevisiae. Although both organisms achieve a very rapid shift in protein synthesis, they do so in very different ways. In Drosophila, heat shock induces a mechanism of translational control which both promotes the translation of hs mRNAs and specifically represses the translation of pre-existing mRNAs. Yeast cells, in contrast, do not possess a special mechanism to sequester pre-existing messages from translation. Instead, most of these messages simply disappear rapidly from the cell, while those that are retained continue to be translated.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Ashburner, M. & Bonner, J. J. Cell 17, 241–254 (1979).

    CAS  Article  Google Scholar 

  2. Ritossa, F. M. Expl Cell Res. 35, 601–607 (1964).

    CAS  Article  Google Scholar 

  3. Tissieres, A., Mitchell, H. K. & Tracy, U. M. J. molec. Biol. 84, 389–398 (1974).

    CAS  Article  Google Scholar 

  4. Spradling, A., Penman, S. & Pardue, M. L. Cell 4, 395–404 (1975).

    CAS  Article  Google Scholar 

  5. McKenzie, S. L., Henikoff, S. & Meselson, M. Proc. natn. Acad. Sci. U.S.A. 72, 1117–1121 (1975).

    ADS  CAS  Article  Google Scholar 

  6. McKenzie, S. L. thesis, Harvard Univ. (1976).

  7. Mirault, M.-E., Gldschmidt-Clermont, M., Moran, L., Arrigo, A. P. & Tissieres, A Cold Spring Harb. Symp. quant. Biol. 42, 819–82 (1976).

  8. Storti, R., Scott, M., Rich, A. & Pardue, M. Cell 22, 825–834 (1980).

    CAS  Article  Google Scholar 

  9. Peterson, N. & Mitchell, H. K. Proc. natn. Acad. Sci. U.S.A. 78, 1708–1711 (1981).

    ADS  Article  Google Scholar 

  10. Falkenthal, S. & Lengyel, J. A. Biochemistry 19, 5842–5850 (1980).

    CAS  Article  Google Scholar 

  11. McKenzie, S. L. J. Cell Biol. 75(2/2), 336A (1977).

    Google Scholar 

  12. Lodish, H. F. J. molec. Biol. 50, 689–702 (1970).

    CAS  Article  Google Scholar 

  13. Lodish, H. F. A. Rev. Biochem. 45, 39–72 (1976).

    CAS  Article  Google Scholar 

  14. Lindquist, S. L. J. molec. Biol. 137, 151–158 (1980).

    CAS  Article  Google Scholar 

  15. Miller, M., Xuong, J. N.-H. & Geiduschek, P. Proc. natn. Acad. Sci. U.S.A. 76, 5222–5525 (1979).

    ADS  CAS  Article  Google Scholar 

  16. McAllister, L. V., Strausberg, S., Kalaga, A. & Finklestein, D. B. Curr. Genet. 1, 63–74 (1979).

    Article  Google Scholar 

  17. McAllister, L. & Finkelstein, D. B. J. Bact. 143, 603–619 (1980).

    Google Scholar 

  18. Lengyel, J. & Penman, S. Devl Biol. 57, 243–255 (1977).

    CAS  Article  Google Scholar 

  19. Laemmli, U. K. Nature 227, 680–685 (1970).

    ADS  CAS  Article  Google Scholar 

  20. Laskey, R. A. & Mills, A. D. Eur. J. Biochem. 56, 335 (1975).

    CAS  Article  Google Scholar 

  21. Pelham, H. R. B. & Jackson, R. J. Eur. J. Biochem. 67, 247–256 (1976).

    CAS  Article  Google Scholar 

  22. Petes, T. D. Cell 19, 765–774 (1980).

    CAS  Article  Google Scholar 

  23. Bach, M. L., LaCroute, F. & Botstein, D. Proc. natn. Acad. Sci. U.S.A. 76, 386–390 (1979).

    ADS  CAS  Article  Google Scholar 

  24. Thomas, P. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).

    ADS  CAS  Article  Google Scholar 

  25. Chia, L. L. & McLanghlin, C. S. Molec. gen. Genet. 170, 137–144 (1979).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lindquist, S. Regulation of protein synthesis during heat shock. Nature 293, 311–314 (1981). https://doi.org/10.1038/293311a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293311a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing