Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Requirement of nifV gene for production of wild-type nitrogenase enzyme in Klebsiella pneumoniae

Abstract

Klebsiella pneumoniae nitrogenase is a complex enzyme consisting of two component proteins, the tetrameric MoFe protein (Kp1) and the dimeric Fe protein (Kp2)1. Together these catalyse the ATP-dependent reduction of N2 and of several triple-bonded substrates such as C2H2, CN, N3 and CH3NC (refs 2, 3). In the absence of substrate, protons are reduced to H2 and all substrates compete with protons for reduction. Carbon monoxide inhibits all reductions except H2 evolution4. Seventeen genes are required for the synthesis of nitrogenase and expression of its activity in K. pneumoniae5–8, some of which are believed to be involved in processing of the nitrogenase proteins during synthesis9,10. Here we describe studies of the nitrogenase of bacteria mutated at one of these genes—nifV. These mutants produce nitrogenase which does not reduce N2 in vivo, although it does in vitro in conditions of high electron flux. We show that the defect is in the Kp1 component, and suggest that the nifV gene product modifies the Kp1 component so that N2 reduction will occur at the lower electron fluxes present in vivo, and that this might have been involved in the possible evolutionary development of the nitrogenase from a cyanide-detoxifying enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mortenson, L. E. & Thorneley, R. N. F. A. Rev. Biochem. 48, 387–418 (1979).

    Article  CAS  Google Scholar 

  2. Zumft, W. G. & Mortenson, L. E. Biochim. biophys. Acta 416, 1–52 (1975).

    Article  CAS  Google Scholar 

  3. Hardy, R. W. F. in A Treatise on Dinitrogen Fixation, Sections I, II (eds Hardy, R. W. F., Bottomley, F. & Burns, R. C.) 515–568 (Wiley-Interscience, New York, 1979).

    Google Scholar 

  4. Hwang, J. C., Chen, C. H. & Burris, R. H. Biochim. biophys. Acta 292, 256–270 (1973).

    Article  CAS  Google Scholar 

  5. MacNeil, T. et al. J. Bact. 136, 253–266 (1978).

    CAS  Google Scholar 

  6. Merrick, M. et al. J. gen. Microbiol. 117, 509–520 (1980).

    CAS  Google Scholar 

  7. Elmerich, C. et al. Molec. gen. Genet. 165, 181–189 (1978).

    Article  CAS  Google Scholar 

  8. Klipp, W. & Pühler, A. in Biological Metabolism of Inorganic and Sulphur Compounds (eds Bothe, H. & Trebst, A.) (Springer, Berlin, in the press).

  9. St. John, R. T., Shah, V. K. & Brill, W. J. J. Bact. 119, 266–269 (1975).

    Google Scholar 

  10. Roberts, G. P. et al. J. Bact. 136, 267–279 (1978).

    CAS  Google Scholar 

  11. Brenchley, J. E., Prival, M. J. & Magasanik, B. J. biol. Chem. 248, 6122–6128 (1973).

    CAS  PubMed  Google Scholar 

  12. Tyler, B. A. Rev. Biochem. 47, 1127–1162 (1978).

    Article  CAS  Google Scholar 

  13. Thorneley, R. N. F. & Eady, R. R. Biochem. J. 167, 457–461 (1977).

    Article  CAS  Google Scholar 

  14. Davis, L. C., Shah, V. K. & Brill, W. J. Biochim. biophys. Acta 403, 67–78 (1975).

    Article  CAS  Google Scholar 

  15. Davis, L. C. & Wang, Y.-L. J. Bact. 141, 1230–1238 (1980).

    CAS  PubMed  Google Scholar 

  16. Smith, L. A., Hill, S. & Yates, M. G. Nature 262, 209–210 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Smith, B. E. et al. Biochem. J. 157, 439–447 (1976).

    Article  CAS  Google Scholar 

  18. Elmerich, D. W. & Burris, R. H. Proc. natn. Acad. Sci. U.S.A. 73, 4369–4373 (1976).

    Article  ADS  Google Scholar 

  19. Smith, B. E. et al. in Recent Developments in Nitrogen Fixation (eds Newton, W., Postgate, J. R. & Rodriguez-Barrueco, R.) 191–203 (Academic, New York, 1977).

    Google Scholar 

  20. Elmerich, D. W., Ljones, T. & Burris, R. H. Biochim. biophys. Acta 527, 359–369 (1978).

    Article  Google Scholar 

  21. Eady, R. R. et al. Biochem. J. 128, 655–675 (1972).

    Article  CAS  Google Scholar 

  22. Shah, V. K. & Brill, W. J. Proc. natn. Acad. Sci. U.S.A. 74, 3249–3253 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Ljones, T. Biochim. biophys. Acta 321, 103–113 (1973).

    Article  CAS  Google Scholar 

  24. Shah, V. K., Davis, L. C. & Brill, W. J. Biochim. biophys. Acta 384, 353–359 (1975).

    Article  CAS  Google Scholar 

  25. Hageman, R. V. & Burris, R. H. Biochim. biophys. Acta 591, 63–75 (1980).

    Article  CAS  Google Scholar 

  26. Silver, W. S. & Postgate, J. R. J. theor. Biol. 40, 1–10 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLean, P., Dixon, R. Requirement of nifV gene for production of wild-type nitrogenase enzyme in Klebsiella pneumoniae. Nature 292, 655–656 (1981). https://doi.org/10.1038/292655a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292655a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing