Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vivo consequences of plasmid topology

Abstract

The topology and physical chemistry of closed circular DNA molecules are well understood, but the significance for events within living cells is less well appreciated. It has been demonstrated recently1–3 that the torsional constraint which arises from negative supercoiling (that is, reduction of linkage) can induce localized novel secondary structure in isolated plasmid and phage DNA. Inverted repeats adopt hairpin-loop structures not found in relaxed DNA. This structural perturbation might be expected to have functional significance within the living cell, but clearly this requires that the torsional free energy be available for unhindered partition between alterations of twist and writhe. Microheterogeneity in DNA structure has recently attracted considerable interest, especially with regard to left-handed sections of duplex4–6. The inverted repeats identified as sites of hairpin formation are relatively small, with stems of 13 base pairs (bp) or less. Whilst these hairpins could result in a relaxation of 10% of the plasmid supercoiling energy, it was of considerable interest to try to construct stem–loop features about 10 times larger so as to study the topological consequences. In the cloning experiment described here, designed to produce direct or inverted 130-bp repeats depending on insertional orientation, no inverse species could be discovered, and deletion events were frequent. It is concluded that the inverted repeat deprives Escherichia coli of its antibiotic resistance. Cruciform adoption by the inverted species can totally relax the torsional constraint in the plasmid. These experiments highlight the importance of topological considerations in the genetics of closed circular DNA, and confirm the availability of torsional constraint in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lilley, D. M. J. Proc. natn. Acad. Sci. U.S.A. 77, 6468–6472 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Panayotatos, N. & Wells, R. D. Nature 289, 466–470 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Lilley, D. M. J. Nucleic Acids Res. 9, 1271–1289 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Wang, H-K. et al. Nature 282, 680–686 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Drew, H., Takano, T., Tanaka, S., Itakura, K. & Dickerson, R. E. Nature 286, 567–573 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. & Ratliff, R. L. Nature 283, 743–745 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Twigg, A. J. & Sherratt, D. Nature 283, 216–218 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Birnboim, H. C. & Doly, J. Nucleic Acids Res. 7, 1513–1523 (1979).

    Article  CAS  Google Scholar 

  9. Wang, J. C. Proc. natn. Acad. Sci. U.S.A. 76, 200–203 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Vinograd, J. & Lebowitz, J. J. gen. Physiol. 49, 103–125 (1966).

    Article  CAS  Google Scholar 

  11. Fuller, F. B. Proc. natn. Acad. Sci. U.S.A. 68, 815–819 (1971).

    Article  ADS  CAS  Google Scholar 

  12. Shishido, K. FEES Lett. 111, 333–336 (1980).

    Article  CAS  Google Scholar 

  13. Bolivar, F. et al. Proc. natn. Acad. Sci. U.S.A. 74, 5265–5269 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Sadler, J. R. et al. Gene 3, 211–232 (1978).

    Article  CAS  Google Scholar 

  15. Gellert, M., Mizuuchi, K., O'Dea, M. H., Ohmori, H. & Tomizawa, J. Cold Spring Harb. Symp. quant. Biol. 43, 35–40 (1978).

    Article  Google Scholar 

  16. Behnke, K., Malke, H., Hartmann, M. & Walter, F. Plasmid 2, 605–616 (1979).

    Article  CAS  Google Scholar 

  17. Wang, J. C. J. molec. Biol. 87, 797–816 (1974).

    Article  CAS  Google Scholar 

  18. Richardson, J. P. Biochemistry 13, 3164–3169 (1974).

    Article  CAS  Google Scholar 

  19. Ullrich, A. et al. Science 196, 1313–1319 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Maniatis, T., Jeffrey, A. & Van de Sande, H. Biochemistry 14, 3787–3794 (1975).

    Article  CAS  Google Scholar 

  21. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Boyer, H. W. & Roullard-Dussoix, D. J. molec. Biol 41, 459–472 (1969).

    Article  CAS  Google Scholar 

  23. Cohen, S. N., Chang, A. C. Y. & Hsu, L. Proc. natn. Acad. Sci. U.S.A. 69, 2110–2114 (1972).

    Article  ADS  CAS  Google Scholar 

  24. Sutcliffe, J. G. Cold Spring Harb. Symp. quant. Biol. 43, 77–90 (1979).

    Article  CAS  Google Scholar 

  25. Katz, L., Kingsbury, D. K. & Helinski, D. R. J. Bact. 114, 557–591 (1973).

    Google Scholar 

  26. Keller, W. Proc. natn. Acad. Sci. U.S.A. 72, 4876–4880 (1975).

    Article  ADS  CAS  Google Scholar 

  27. Shure, M. & Vinograd, J. Cell 8, 215–226 (1976).

    Article  CAS  Google Scholar 

  28. Sharp, P. A., Sugden, B. & Sambrook, J. Biochemistry 12, 3055–3063 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lilley, D. In vivo consequences of plasmid topology. Nature 292, 380–382 (1981). https://doi.org/10.1038/292380a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292380a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing