Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Erythrocyte membrane sidedness in lectin control of the Ca2+–A23187-mediated diskocyte echinocyte conversion

Abstract

Increasing the cytoplasmic calcium concentration of human erythrocytes with ionophore A23187 drives the transformation from diskocyte to echinocyte morphology1. This transformation is closely linked to the intracellular ATP level, which drops when calcium is introduced across the membrane2,3. The echinocyte morphology reverts to the diskocyte after restoration of normal ATP and calcium levels4,5. ATP control of cell morphology is thought to depend on the action of a protein kinase and phosphatase which reversibly modify the membrane cytoskeleton6–9. The cytoskeleton in turn is in contact with the outside membrane surface via transmembrane proteins10–11. We show here that binding of the lectin, wheat-germ agglutinin (WGA), to the erythrocyte membrane surface blocks the morphological conversions diskocyte echinocyte in both directions. WGA seems to work via a mechanism involving the transmembrane glycoprotein, glycophorin13,14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weed, R. I., Lacelle, P. L. & Merrill, E. W. J. clin. Invest. 48, 795–811 (1969).

    Article  CAS  Google Scholar 

  2. Taylor, D., Baker, R. & Hochstein, P. Biochem. Biophys. Res. Commun. 76, 205–211 (1977).

    Article  CAS  Google Scholar 

  3. Edmondson, J. W. & Li, T. K. Biochem. Biophys. Acta 443, 106–113 (1977).

    Article  Google Scholar 

  4. Feo, C. & Mohandas, N. Nature 265, 166–168 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Palek, J., Liu, P. A. & Liu, S. C. Nature 274, 505–507 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Birchmeir, W. & Singer, S. J. J. Cell biol. 73, 647–659 (1976).

    Article  Google Scholar 

  7. Sheetz, M. P. & Singer, S. J. J. Cell biol. 73, 638–646 (1976).

    Article  Google Scholar 

  8. Fischer, S., Tortolero, M., Piau, J. P., Delaunay, J. & Schapira, G. Biochim. Biophys. Acta 598, 463–471 (1980).

    Article  CAS  Google Scholar 

  9. Pinder, J. C., Bray, D. & Gratzer, W. D. Nature 270, 152–154 (1977).

    Article  Google Scholar 

  10. Bennett, V. & Stenbuck, P. J. Nature 280, 468–473 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Tyler, J. M., Margraves, W. R. & Branton, D. Proc. Natn. Acad. Sci. U.S.A.. 76, 5192–5196 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Nigg, E. A., Bron, C., Girardet, M. & Cherry, R. J. Biochemistry, 19, 1887–1893 (1980).

    Article  CAS  Google Scholar 

  13. Adair, W. L. & Kornfeld, S. J. Biol. Chem. 249, 4696–4704 (1974).

    CAS  Google Scholar 

  14. Lovrien, R. E. & Anderson, R. A. J. Cell biol. 85, 534–548 (1980).

    Article  CAS  Google Scholar 

  15. Ferreira, H. G. & Lew, V. L. Nature 259, 47–49 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Lorand, L., Siefring, G. E. & Lowe-krentz, L. J. Supramolec. Struc. 9, 427–440 (1978).

    Article  CAS  Google Scholar 

  17. Siefring, G. E., Apostel, A. B., Velasco, P. T. & Lorand, L. Biochemistry 17, 2598–2606 (1978).

    Article  CAS  Google Scholar 

  18. Alien, D., Billah, M. M., Finean, J. B. & Michell, R. H. Nature 261, 58–60 (1976).

    Article  ADS  Google Scholar 

  19. Alien, D. & Michell, R. H. Biochem. J. 166, 495–499 (1977).

    Article  Google Scholar 

  20. Schekman, S. & Singer, S. J. Proc. Natn. Acad. Sci. U.S.A. 73, 4075–4079 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Kuettner, C. A., Staehelin, L. A. & Gordon, J. A. Biochim. Biophys. Acta 448, 114–120 (1976).

    Article  CAS  Google Scholar 

  22. Elgsaeter, A. & Branton, D. J. Cell biol. 63, 1018–1033 (1974).

    Article  CAS  Google Scholar 

  23. Carter, W. G. & Sharon, N. Archs Biochem. Biophys. 180, 570–582 (1977).

    Article  CAS  Google Scholar 

  24. Lovrien, R., Tisel, W. & Pesheck, P. J. biol. Chem. 250, 3136–3141 (1975).

    CAS  PubMed  Google Scholar 

  25. Wright, C. S. J. Molec. Biol. 141, 267–272 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, R., Lovrien, R. Erythrocyte membrane sidedness in lectin control of the Ca2+–A23187-mediated diskocyte echinocyte conversion. Nature 292, 158–161 (1981). https://doi.org/10.1038/292158a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292158a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing