Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Contralateral denervation causes enhanced transmitter release from frog motor nerve terminals

Abstract

It is becoming increasingly apparent that vertebrate neuromuscular junctions can exhibit considerable plasticity in transmitter release. Long-term changes in the level of release, and therefore the effectiveness of synaptic transmission, are seen in conditions of altered use1,2, ageing3,4, hibernation5, disease6, hormonal influence7 and as a result of competitive interaction8. We have previously shown that transmitter release at frog neuromuscular junctions can vary over a wide range depending on the type of muscle examined9,10 or motor unit size11,12. We now present evidence that unilateral denervation of the frog sartorius muscle causes a large increase in transmitter release from nerve terminals in the contralateral sartorius, without an increase in synaptic size. Consequently, the safety margin for neuromuscular transmission is enhanced13. Contralateral denervation also causes a significant increase in apparent poly-neuronal innervation; but in contrast to similar experiments with the frog cutaneous pectoris muscle14–17, the increase in polyneuronal innervation does not seem to be due to nerve terminal sprouting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Robbins, N. in The Neurosciences, Third Study Program (eds Schmitt, F. O. & Worden, F. G.) 953–960 (MIT Press, Cambridge, 1974); Trends Neurosci. 3, 120–122 (1980).

    Google Scholar 

  2. Snider, W. D. & Harris, G. L. Nature 281, 69–71 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Gutmann, E. & Hanzlíková, V. Age Changes in the Neuromuscular System (Scientechnica, Bristol, 1972).

    Google Scholar 

  4. Smith, D. O. ExplNeurol. 66, 650–666 (1979).

    CAS  Google Scholar 

  5. Melichar, I., Brožek, G., Janský, L. & Vyskocil, F. Pfügers Arch. ges. Physiol. 345, 93–106 (1973).

    Article  Google Scholar 

  6. Cull-Candy, S. G., Miledi, R., Trautman, A. & Uchitel, O. D. J. Physiol., Lond. 299, 621–638 (1980).

    Article  CAS  Google Scholar 

  7. Tucek, S., Kostiova, D. & Gutmann, E. J. neurol. Sci. 27, 353–362 (1976).

    Article  CAS  Google Scholar 

  8. Mark, R. F. Physiol. Rev. 60, 355–395 (1980).

    Article  CAS  Google Scholar 

  9. Herrera, A. A. & Grinnell, A. D. Brain Res. 194, 228–231 (1980).

    Article  CAS  Google Scholar 

  10. Grinnell, A. D. & Herrera, A. A. J. Physiol., Lond. 307, 301–317 (1980).

    Article  CAS  Google Scholar 

  11. Herrera, A. A. & Grinnell, A. D. Nature 287, 649–651 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Grinnell, A. D. & Herrera, A. A. Soc. Neurosci. Abstr., 10th a. Meet. Abstr. 192.11 (1980).

  13. Herrera, A. A. & Grinnell, A. D. Soc. Neurosci. Abstr., 10th a. Meet. Abstr. 32.4 (1980).

  14. Reichert, F. & Rotshenker, S. Brain Res. 170, 187–189 (1979).

    Article  CAS  Google Scholar 

  15. Rotshenker, S. Israel J. med. Sci. 14, 1002 (1978); Brain Res. 155, 354–356 (1978); J. Physiol., Lond. 292, 535–547 (1979).

    Google Scholar 

  16. Rotshenker, S. & McMahan, U. J. J. Neurocytol. 5, 719–730 (1976).

    Article  CAS  Google Scholar 

  17. Rotshenker, S. & Reichert, F. J. comp. Neurol. 193, 413–422 (1980).

    Article  CAS  Google Scholar 

  18. Karnovsky, M. J. J. Cell Biol. 23, 217–232 (1964).

    Article  CAS  Google Scholar 

  19. Kuno, M., Turkanis, S. A. & Weakly, J. N. J. Physiol., Lond. 213, 545–556 (1971).

    Article  CAS  Google Scholar 

  20. Wernig, A., Pécot-Dechavassine, M. & Stöver, H. J. Neurocytol. 9, 277–303 (1980).

    Article  Google Scholar 

  21. Letinsky, M. S. & DeCino, P. A. J. Neurocytol. 9, 305–320 (1980).

    Article  CAS  Google Scholar 

  22. Vyskočil, F. & Magazanik, L. G. Pflügers Arch. ges. Physiol. 368, 271–273 (1977).

    Article  Google Scholar 

  23. Weakly, J. N. Brain Res. 158, 235–239 (1978).

    Article  CAS  Google Scholar 

  24. Weakly, J. N. & Yao, Y. M. Brain Res. 204, 421–423 (1981).

    Article  CAS  Google Scholar 

  25. Bennett, M. R. & Lavidis, N. A. J. gen. Physiol. 74, 429–456 (1979).

    Article  CAS  Google Scholar 

  26. De Cino, P. J. Neurosci. 1, 308–317 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera, A., Grinnell, A. Contralateral denervation causes enhanced transmitter release from frog motor nerve terminals. Nature 291, 495–497 (1981). https://doi.org/10.1038/291495a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291495a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing