Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutagenesis in vitro by depurination of ΦX174 DNA

Abstract

Depurination, the spontaneous release of purine bases from DNA, occurs by the breakage of the N- glycosylic bond between the purine base and the deoxyribose moiety. The resulting apurinic site is relatively stable, with an in vitro half life of up to several days1. The rate constant of depurination in vitro has been estimated to be 1.8×10−9 per min (ref. 2). This corresponds to the formation of 20,000 apurinic sites per mammalian cell per day. In addition, much of the damage to DNA by chemical carcinogens occurs through covalent binding to the N-3 and N-7 positions on the purine bases3,4, enhancing the rate of depurination of that base by three to four orders of magnitude5–7. The fact that cells have multiple pathways for removing apurinic sites8,9 and even a mechanism for reinserting purines10 suggests that the presence of apurinic sites may be highly detrimental. Apurinic sites in DNA have been postulated as potential mutagenic lesions11, although there has been little experimental support for this concept. We have previously demonstrated that depurination of synthetic polynucleotide templates leads to increased mis-incorporation of non-complementary nucleotides12,13. We now present evidence that a DNA polymerase can copy past apurinic sites on natural, biologically active DNA and further, that this leads to increased mutagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lindahl, T. & Andersson, A. Biochemistry 11, 3618–3623 (1972).

    Article  CAS  Google Scholar 

  2. Lindahl, T. & Nyberg, B. Biochemistry 11, 3610–3618 (1972).

    Article  CAS  Google Scholar 

  3. Lawley, P. D. & Brookes, P. Biochem. J. 89, 138–144 (1963).

    Article  Google Scholar 

  4. Singer, B., Kroger, M. & Carrano, M. Biochemistry 17, 1246–1250 (1978).

    Article  CAS  Google Scholar 

  5. Margison, G. P. & O'Connor, P. J. Biochim. biophys. Acta 331, 349–356 (1973).

    Article  CAS  Google Scholar 

  6. Kirtikar, D. M. & Goldthwait, D. A. Proc. natn. Acad. Sci. U.S.A. 71, 2022–2026 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Strauss, B., Scudiero, D. & Henderson, E. in Molecular Mechanisms for Repair of DNA Pt A (eds Hanawalt, P. C. & Setlow, R. B.) 13–24 (Plenum, New York, 1975).

    Book  Google Scholar 

  8. Weiss, B. J. biol. Chem. 251, 1896–1901 (1976).

    CAS  PubMed  Google Scholar 

  9. Lindahl, T. Prog. Nucleic Acid Res. molec. Biol. 22, 135–192 (1979).

    Article  CAS  Google Scholar 

  10. Deutsch, W. A. & Linn, S. Proc. natn. Acad. Sci. U.S.A. 76, 1089–1093 (1979).

    Article  Google Scholar 

  11. Bautz, E. & Freese, E. J. gen. Microbiol. 22, 113–128 (1960).

    Article  Google Scholar 

  12. Shearman, C. W. & Loeb, L. A. Nature 270, 537–538 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Shearman, C. W. & Loeb, L. A. J. molec. Biol. 128, 197–218 (1979).

    Article  CAS  Google Scholar 

  14. Weymouth, L. A. & Loeb, L. A. Proc. natn. Acad. Sci. U.S.A. 75, 1924–1928 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Kunkel, T. A. & Loeb, L. A. J. biol. Chem. 254, 5718–5724 (1979).

    CAS  PubMed  Google Scholar 

  16. Kunkel, T. A. & Loeb, L. A. J. biol. Chem. 255, 9961–9966 (1980).

    CAS  PubMed  Google Scholar 

  17. Lawley, P. D. & Martin, N. C. Biochem. J. 145, 85–91 (1975).

    Article  CAS  Google Scholar 

  18. Bingham, P. M., Baltz, R. H., Ripley, L. A. & Drake, J. W. Proc. natn. Acad. Sci. U.S.A. 73, 4159–4163 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Abbott, P. J. & Saffhill, R. Biochim. biophys. Acta 562, 51–61 (1979).

    Article  CAS  Google Scholar 

  20. Moore, P. & Strauss, B. P. Nature 278, 664–666 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Radman, M. in Molecular and Environmental Aspects of Mutagenesis (eds Prakash, L., Sherman, F., Miller, M. W., Lawrence, C. W. & Taber, H. W.) 128–142 (Thomas, Springfield, 1974).

    Google Scholar 

  22. Schaaper, R. & Loeb, L. A. Proc. natn. Acad. Sci. U.S.A. 78, 1773–1777 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Osborne, M. R., Harvey, R. G. & Brookes, P. Chem.-biol. Interact. 20, 123–130 (1978).

    Article  CAS  Google Scholar 

  24. Lin, J., Miller, J. A. & Miller, E. C. Cancer Res. 37, 4430–4438 (1977).

    CAS  PubMed  Google Scholar 

  25. Stark, A. A., Essigmann, J. M., Demain, A. L., Skopek, T. R. & Wogan, G. N. Proc. natn. Acad. Sci. U.S.A. 76, 1343–1347 (1979).

    Article  ADS  CAS  Google Scholar 

  26. Drinkwater, N. R., Miller, E. C. & Miller, J. A. Biochemistry 19, 5087–5092 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunkel, T., Shearman, C. & Loeb, L. Mutagenesis in vitro by depurination of ΦX174 DNA. Nature 291, 349–351 (1981). https://doi.org/10.1038/291349a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291349a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing