Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon dioxide, ammonia and the origin of life

Abstract

Stellar evolution theory predicts that the luminosity of the Sun has increased by 30% over the past 4,000 Myr. Yet geological and biological evidence indicates that the climate of the Earth between 3,000 and 4,000 Myr ago was as warm as, or warmer than, today. This apparent contradiction, the ‘faint Sun paradox’, has been resolved by invoking the greenhouse effect of radiatively active gases in the early Earth atmosphere. Sagan and Mullen1 first suggested that the concentration of ammonia in the early atmosphere was around 10–100 p.p.m., sufficiently high to counteract the reduced luminosity. However, because ammonia photodissociates readily and has a short atmospheric residence time2,3, such a concentration could be maintained only by a large continuous ammonia source. For this reason, carbon dioxide is now considered to have been the radiatively active gas4–7. Some atmospheric ammonia is, nevertheless, required to provide conditions conducive to the origin of life8. We now show that, if the early Earth's atmosphere contained high concentrations of CO2, as suggested above, then the chemical conditions required for life to begin can be maintained by very low ammonia partial pressures, rather similar to those observed today.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sagan, C. & Mullen, G. Science 177, 52 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Abelson, P. H. Proc. natn. Acad. Sci. U.S.A. 55, 1365 (1966).

    Article  ADS  CAS  Google Scholar 

  3. Kuhn, W. R. & Atreya, S. K. Icarus 37, 207 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Owen, T. in Evolution of Planetary Atmospheres and Climatology of the Earth, 1–10 (CNES, Toulouse, 1978).

    Google Scholar 

  5. Henderson-Sellers, A. & Meadows, A. J. in Evolution of Planetary Atmospheres and Climatology of the Earth, 25–30 (CNES, Toulouse, 1978).

    Google Scholar 

  6. Owen, T., Cess, R. D. & Ramanathan, V. Nature 277, 640 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Henderson-Sellers, A., Benlow, A. & Meadows, A. J. Q. Jl R. astr. Soc. 21, 74 (1980).

    ADS  CAS  Google Scholar 

  8. Bada, J. L. & Miller, S. L. Science 159, 423 (1968).

    Article  ADS  CAS  Google Scholar 

  9. Pinto, J. P., Gladstone, G. R. & Yung, Y. L. Science 210, 183 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Sillén, L. G. & Martell, A. E. Stability Constants of Metal-Ion Complexes (Chemical Society Special Publication No. 17, 1964).

    Google Scholar 

  11. Robie, R. A., Hemingway, B. S. & Fisher, J. R. Bull. geol. Surv. 1452 (1978).

  12. Wright, J. M., Lindsay, W. T. Jr & Druga, T. R. U. S. Atomic Energy Commission R and D Rep. WAPD-TM-204 (1961).

  13. Rubey, W. W. Bull. geol. Soc. Am. 62, 1111 (1951).

    Article  CAS  Google Scholar 

  14. Söderlund, R. & Svensson, B. H. in Nitrogen, Phosphorus and Sulphur: Global Cycles (eds. Svensson, B. H. & Söderlund, R) 23–73 (SCOPE Rep. 7, Stockholm, 1976).

    Google Scholar 

  15. Georgii, H. W. & Gravenhorst, G. Pure appl. Geophys. 115, 503 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Harned, H. S. & Davies, R. Jr J. Am. chem. Soc. 65, 2030 (1943).

    Article  CAS  Google Scholar 

  17. Schidlowski, N., Appel, P. W. V., Eichmann, R. & Junge, C. E. Geochim. cosmochim. Acta 43, 189 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Bridgwater, D. et al. Nature 289, 51 (1981).

    Article  ADS  Google Scholar 

  19. Nagy, B., Engel, M. H., Zumberge, J. E., Ogino, H. & Chang, S. Y. Nature 289, 53 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Hart, M. H. Icarus 33, 23 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Levine, J. S., Augustsson, T. R. & Hoell, J. M. Geophys. Res. Lett. 7, 317 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Lodge, J. P., Machado, P. A., Pate, J. B., Sheesly, D. C., Wartburg, A. F. Tellus 26, 250 (1974).

    Article  ADS  CAS  Google Scholar 

  23. Henderson-Sellers, A. & Schwartz, A. W. Nature 287, 526 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Sagan, C. Nature 269, 224 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wigley, T., Brimblecombe, P. Carbon dioxide, ammonia and the origin of life. Nature 291, 213–215 (1981). https://doi.org/10.1038/291213a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291213a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing