Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Can Kimberlites be generated from an ordinary mantle?

Abstract

Kimberlites are characterized by a high concentration of incompatible elements, including light rare earths. However, Nd isotopic evidence indicates that their source regions do not have a long history of enrichment. If kimberlites can be generated from non-enriched mantle sources by simple partial melting processes, this implies that crystal–liquid partition coefficients for some trace elements are lower for kimberlitic liquids than for basalts or andesites. From a comparison of clinopyroxene megacrysts (regarded as equilibrated with kimberlite at depth) with existing kimberlite data we argue here that low crystal–liquid partition coefficients for the rare earths are plausible.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Eggler, D. H. Yb Carnegie Instn Wash. 74, 468–474 (1975).

    Google Scholar 

  2. Wyllie, P. J. J. Geol. 86, 687–713 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Barrett, D. R. & Berg, G. W. Phys. chem. Earth 9, 619–636 (1975).

    Article  Google Scholar 

  4. DePaolo, D. J. & Wasserburg, G. J. Geochim. cosmochim. Acta 43, 615–628 (1979).

    Article  ADS  CAS  Google Scholar 

  5. O'Nions, R. K., Carter, S. R., Evensen, N. M. & Hamilton, P. J. A. Rev. Earth & planet. Sci. 7, 11–38 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Basu, A. H. & Tatsumoto, M. Science 205, 398–401 (1979).

    Article  ADS  CAS  Google Scholar 

  7. DePaolo, D. J. U.S. Geol. Surv. Open File Rep. 1978-701, 81–93 (1978).

  8. Hawkesworth, C. J. et al. Earth planet Sci. Lett. 42, 45–57 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Menzies, M. & Murthy, V. R. Nature 283, 634–636 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Kramers, J. D. Earth planet. Sci. Lett. 34, 419–431 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Fesq, H. W., Kable, E. J. D. & Gurney, J. J. Phys. chem. Earth 9, 687–707 (1975).

    Article  CAS  Google Scholar 

  12. Mitchell, R. H. & Brunfelt, A. O. Phys. chem. Earth 9, 671–686 (1975).

    Article  CAS  Google Scholar 

  13. Frey, F. A., Ferguson, J. & Chappell, B. W. 2nd Int. Kimberlite Conf. Ext. Abstr. (Carnegie Institution, Washington DC, 1977).

  14. Kramers, J. D. Earth planet. Sci. Lett. 42, 58–70 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Barrett, D. R. Phys. chem. Earth 9, 637–654 (1975).

    Article  CAS  Google Scholar 

  16. Shimizu, N. Phys. chem. Earth 9, 655–669 (1975).

    Article  CAS  Google Scholar 

  17. Shimizu, N. Earth planet. Sci. Lett. 25, 26–32 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Nixon, P. H. Rogers, N. W., Gibson, I. L. & Grey, A. A. Rev. Earth planet. Sci. (in the press).

  19. Boyd, F. R. & Nixon, P. H. in Lesotho Kimberlites (ed. Nixon, P. H.) 67–75 (Lesotho National Development Corporation, 1973).

    Google Scholar 

  20. Dawson, J. B., Gurney, J. J. & Lawless, P. J. Nature 257, 299–300 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Menzies, M. & Murthy, V. R. Earth planet. Sci. Lett. 46, 323–334 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Eggler, D. H., McCallum, M. E. & Smith, C. B. in The Mantle Sample, 213–226 (American Geophysical Union, 1979).

  23. Boyd, F. R. & Nixon, P. H. Geochim. cosmochim. Acta 42, 1367–1382 (1978).

    Article  ADS  CAS  Google Scholar 

  24. Nixon, P. H., von Knorring, O. & Rooke, J. M. Am. Miner. 48, 1090–1132 (1963).

    CAS  Google Scholar 

  25. Green, H. W. II & Gueguen, Y. Nature 249, 617–620 (1974).

    Article  ADS  Google Scholar 

  26. Boyd, F. R. & Danchin, R. V. Am. J. Sci. 280-A (Jackson Vol.) 528–549 (1980).

    Google Scholar 

  27. Sheppard, S. M. F. & Dawson, J. B. Phys. chem. Earth 9, 747–763 (1975).

    Article  CAS  Google Scholar 

  28. Smith, C. B. thesis, Colorado State Univ., Fort Collins (1977).

  29. Shimizu, N. Geochim. cosmochim. Acta 38, 1789–1798 (1974).

    Article  ADS  CAS  Google Scholar 

  30. Irving, A. J. Geochim. cosmochim. Acta 42, 743–770 (1978).

    Article  ADS  CAS  Google Scholar 

  31. Nicholls, A. & Harris, K. L. Geochim. cosmochim. Acta 44, 287–308 (1980).

    Article  ADS  CAS  Google Scholar 

  32. Onuma, N., Higuchi, H., Wakita, H. & Nagasawa, H. Earth planet Sci. Lett. 5, 47–51 (1968).

    Article  ADS  CAS  Google Scholar 

  33. Philpotts, J. A. & Schnetzler, C. Geochim. cosmochim. Acta 34, 307–322 (1970).

    Article  ADS  CAS  Google Scholar 

  34. Schnetzler, C. & Philpotts, J. A. Geochim. cosmochim. Acta 34, 331–340 (1970).

    Article  ADS  CAS  Google Scholar 

  35. Wendlandt, R. F. & Harrison, W. J. Contr. Miner. Petrol. 69, 409–419 (1979).

    Article  ADS  CAS  Google Scholar 

  36. Harris, P. G. & Middlemost, E. A. K. Lithos 3, 77–88 (1969).

    Article  ADS  Google Scholar 

  37. Davis, G. L. 2nd Int. Kimberlite Conf. Ext. Abstr. (Carnegie Institution, Washington DC, 1977).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kramers, J., Smith, C., Lock, N. et al. Can Kimberlites be generated from an ordinary mantle?. Nature 291, 53–56 (1981). https://doi.org/10.1038/291053a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291053a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing