Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kinetics and regulation of fast endocytosis at hippocampal synapses

Abstract

Presynaptic nerve terminals often contain as few as a hundred vesicles1,2 and so must recycle them soon after exocytosis to preserve synaptic transmission and presynaptic morphology3,4 during repetitive firing. The kinetics3,4 and mechanisms5 of vesicular endocytosis and repriming have therefore been studied. Vesicles in hippocampal nerve terminals can become available to release their contents within 40 s of the previous round of exocytosis6,7. Studies using the styryl dye FM1-43 (ref. 3) have estimated the time constant for endocytosis as 20–30 s (refs 4, 8), at least half of the total recycling time, which is much slower than endocytosis in other secretory systems9,10,11. It seems paradoxical that the neurosecretory terminals that could benefit themost from rapid endocytosis do not use such a mechanism. Here we demonstrate the existence of fast endocytosis in hippocampal nerve terminals and derive its kinetics from fluorescence measurements using dyes with varying rates of membrane departitioning. The rapid mode of vesicular retrieval was much faster after exposure to staurosporine or elevated extracellular calcium. Thus hippocampal synapses take advantage of efficient mechanisms for endocytosis, and their vesicular retrieval is subject to modulatory control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic depiction of recycling of vesicles marked with FM dye.
Figure 2: Destaining characteristics of individual synaptic boutons in response to sustained 90 K+, 2 Ca2+ stimulation.
Figure 3: Differences in departitioning kinetics of FM dyes support detection of fast endocytosis.
Figure 4: A simple model accounts for the dependence of bouton destaining kinetics on dye species.
Figure 5: Effects of staurosporine and elevated [Ca2+]0.

Similar content being viewed by others

References

  1. Harris, K. M. & Sultan, P. Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses. Neuropharmacology 34, 1387–1395 (1995).

    Article  CAS  Google Scholar 

  2. Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    Article  CAS  Google Scholar 

  3. Betz, W. J., Mao, F. & Smith, C. B. Imaging exocytosis and endocytosis. Curr. Opin. Neurobiol. 6, 365–371 (1996).

    Article  CAS  Google Scholar 

  4. Ryan, T. A., Smith, S. J. & Reuter, H. The timing of synaptic vesicle endocytosis. Proc. Natl Acad. Sci. USA 93, 5567–5571 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Cremona, O. & De Camilli, P. Synaptic vesicle endocytosis. Curr. Opin. Neurobiol. 7, 323–330 (1997).

    Article  CAS  Google Scholar 

  6. Ryan, T. A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993).

    Article  CAS  Google Scholar 

  7. Liu, G. & Tsien, R. W. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 268, 1624–1628 (1995).

    Google Scholar 

  8. Wu, L. G. & Betz, W. J. Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17, 769–779 (1996).

    Article  CAS  Google Scholar 

  9. Thomas, P., Lee, A. K., Wong, J. G. & Almers, W. Atriggered mechanism retrieves membrane in seconds after Ca2+-stimulated exocytosis in single pituitary cells. J. Cell Biol. 124, 667–675 (1994).

    Article  CAS  Google Scholar 

  10. Smith, C. & Neher, E. Multiple forms of endocytosis in bovine adrenal chromaffin cells. J. Cell Biol. 139, 885–894 (1997).

    Article  CAS  Google Scholar 

  11. Engisch, K. L. & Nowycky, M. Compensatory and excess retrieval: two types of endocytosis following single step depolarizations in bovine adrenal chromaffin cells. J. Physiol. (Lond.) 506, 591–608 (1998).

    Article  CAS  Google Scholar 

  12. Henkel, A. W. & Almers, W. Fast steps in exocytosis and endocytosis studied by capacitance measurements in endocrine cells. Curr. Opin. Neurobiol. 6, 350–357 (1996).

    Article  CAS  Google Scholar 

  13. Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).

    Article  CAS  Google Scholar 

  14. Miller, T. M. & Heuser, J. E. Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. J. Cell Biol. 98, 685–698 (1984).

    Article  CAS  Google Scholar 

  15. Koenig, J. H. & Ikeda, K. Synaptic vesicles have two distinct recycling pathways. J. Cell Biol. 135, 797–808 (1996).

    Article  CAS  Google Scholar 

  16. Ceccarelli, B. & Hurlbut, W. P. Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 87, 297–303 (1980).

    Article  CAS  Google Scholar 

  17. Fesce, R., Grohovaz, F., Valtorta, F. & Meldolesi, J. Neurotransmitter release: fusion or “kiss and run”? Trends Cell Biol. 4, 1–4 (1994).

    Article  CAS  Google Scholar 

  18. Henkel, A. W. & Betz, W. J. Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals. J. Neurosci. 15, 8246–8258 (1995).

    Article  CAS  Google Scholar 

  19. Murthy, V. N. & Stevens, C. F. Synaptic vesicles retain their identity through the endocytotic cycle. Nature 392, 497–501 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Takei, K., Mundigl, O., Daniell, L. & De Camilli, P. The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J. Cell Biol. 133, 1237–1250 (1996).

    Article  CAS  Google Scholar 

  21. Malgaroli, A. & Tsien, R. W. Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons. Nature 357, 134–139 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Lagnado, L., Gomis, A. & Job, C. Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron 17, 957–967 (1996).

    Article  CAS  Google Scholar 

  23. Kraszewski, K., Daniell, L., Mundigl, O. & De Camilli, P. Mobility of synaptic vesicles in nerve endings monitored by recovery from photobleaching of synaptic vesicle-associated fluorescence. J. Neurosci. 16, 5905–5913 (1996).

    Article  CAS  Google Scholar 

  24. Parsons, T. D., Lenzi, D., Almers, W. & Roberts, W. M. Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13, 875–883 (1994).

    Article  CAS  Google Scholar 

  25. Burgoyne, R. D. Fast exocytosis and endocytosis triggered by depolarisation in single adrenal chromaffin cells before rapid Ca2+ current run-down. Pflugers Arch. 430, 213–219 (1995).

    Article  CAS  Google Scholar 

  26. Plattner, H., Braun, C. & Hentschel, J. Facilitation of membrane fusion during exocytosis and exocytosis-coupled endocytosis and acceleration of “ghost” detachment in Paramecium by extracellular calcium. A quenched-flow/freeze-fracture analysis. J. Membr. Biol. 158, 197–208 (1997).

    Article  CAS  Google Scholar 

  27. von Gersdorff, H. & Matthews, G. Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature 370, 652–666 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Ramaswami, M., Krishnan, K. S. & Kelly, R. B. Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions. Neuron 13, 363–375 (1994).

    Article  CAS  Google Scholar 

  29. Zimmerberg, J., Blumenthal, R., Sarkar, D. P., Curran, M. & Morris, S. J. Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion. J. Cell Biol. 127, 1885–1894 (1994).

    Article  CAS  Google Scholar 

  30. Betz, W. J. & Bewick, G. S. Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction. J. Physiol. (Lond.) 460, 287–309 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. J Smith and T. L. Schwarz for critically reading the manuscript, members of the Tsien laboratory for comments; and J. Bergsman for discussions and suggestions. This work was supported by grants from NIMH, the Mathers Charitable Foundation, the McKnight Endowment Fund for Neuroscience (R.W.T.), and fellowships from the Boehringer Ingelheim Fonds (J.K.) and the American Heart Association California Affiliate (E.T.K.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Tsien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klingauf, J., Kavalali, E. & Tsien, R. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394, 581–585 (1998). https://doi.org/10.1038/29079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29079

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing