Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Production of O2 on icy satellites by electronic excitation of low-temperature water ice

Abstract

The signature of condensed molecular oxygen has been reported in recent optical-reflectance measurements of the jovian moon Ganymede1, and a tenuous oxygen atmosphere has been observed on Europa2. The surfaces of these moons contain large amounts of water ice, and it is thought that O2 is formed by the sputtering ofice by energetic particles from the jovian magnetosphere3,4,5,6,7,8. Understanding how O2 might be formed from low-temperature ice is crucial for theoretical and experimental simulations of the surfaces and atmospheres of icy bodies in the Solar System. Here we report laboratory measurements of the threshold energy, cross-section and temperature dependence of O2 production by electronic excitation of ice in vacuum, following electron-beam irradiation. Molecular oxygen is formed by direct excitation and dissociation of a stable precursor molecule, rather than (as has been previously thought) by diffusion and chemical recombination of precursor fragments. The large cross-section for O2 production suggests that electronic excitation plays an important part in the formation of O2 on Ganymede and Europa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Image of the O2 yield as a function of electron-beam spot position on an ice thin-film sample.
Figure 2: O2 yield versus electron dose.

Similar content being viewed by others

References

  1. Spencer, J. R., Calvin, W. M. & Person, M. J. Charge-coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede. J. Geophys. Res. 100, 19049–19056 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Hall, D. T., Strobel, D. F., Feldman, P. D., McGrath, M. A. & Weaver, H. A. Detection of an oxygen atmosphere on Jupiter's moon Europa. Nature 373, 677–679 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Calvin, W. M., Johnson, R. E. & Spencer, J. R. O2on Ganymede: Spectral characteristics and plasma formation mechanisms. Geophys. Res. Lett. 23, 673–676 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Calvin, W. M. & Spencer, J. R. Latitudinal distribution of O2on Ganymede: Observations with the Hubble Space Telescope. Icarus 130, 505–516 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Johnson, R. E. Sputtering of ices in the outer solar system. Rev. Mod. Phys. 68, 305–312 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Johnson, R. E. & Quickenden, T. I. Photolysis and radiolysis of water ice on outer solar system bodies. J. Geophys. Res. 102, 10985–10996 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Vidal, R. A., Bahr, D., Baragiola, R. A. & Peters, M. Oxygen on Ganymede: Laboratory studies. Science 276, 1839–1842 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Ip, W.-H., Williams, D. J., McEntire, R. W. & Mauk, B. Energetic ion sputtering effects at Ganymede. Geophys. Res. Lett. 24, 2631–2634 ((1997).

    Article  ADS  CAS  Google Scholar 

  9. Lanzerotti, L. J., Brown, W. L., Poate, J. M. & Augustyniak, W. M. On the contribution of water products from Galiliean satellites to the Jovian magnetosphere. Geophys. Res. Lett. 5, 155–158 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Johnson, R. E. Energetic Charged-particle Interactions with Atmospheres and Surfaces (Springer, Berlin, (1990).

    Book  Google Scholar 

  11. Johnson, R. E., Lanzerotti, L. J., Brown, W. L. & Armstrong, T. P. Erosion of Galilean satellite surfaces by Jovian magnetosphere particles. Science 212, 1027–1030 (1980).

    Article  ADS  Google Scholar 

  12. Brown, W. L., Lanzerotti, L. J., Poate, J. M. & Augustyniak, W. M. “Sputtering” of ice by MeV light ions. Phys. Rev. Lett. 40, 1027–1030 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Kimmel, G. A. & Orlando, T. M. Low-energy (5-120 eV) electron-stimulated dissociation of amorphous D2O ice: D(2S), O(3P2,1,0) and O(1D2) yields and velocity distributions. Phys. Rev. Lett. 75, 2606–2609 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Sieger, M. T., Simpson, W. C. & Orlando, T. M. Electron-stimulated desorption of D+ from D2O ice: Surface structure and electronic excitations. Phys. Rev. B 56, 4925–4937 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Brown et al. Erosion and molecule formation in condensed gas films by electronic energy loss of fast ions. Nucl. Inst. Methods 198 1–8 ((1982).

    Article  ADS  CAS  Google Scholar 

  16. Reimann, C. T. et al. Ion-induced molecular ejection from D2O ice. Surf. Sci. 147, 227–240 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Westley, M. S., Baragiola, R. A., Johnson, R. E. & Baratta, G. A. Photodesorption from low-temperature water ice in interstellar and circumsolar grains. Nature 373, 405–407 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Simpson, W. C. et al. Dissociative electron attachment in nanoscale ice films: Temperature and morphology effects. J. Chem. Phys. 107, 8668–8678 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Bednarek, J., Plonka, A., Hallbrucker, A., Mayer, E. & Symons, M. C. R. Hydroperoxyl radical generation by gamma-irradiation of glassy water at 77 K. J. Am. Chem. Soc. 118, 9387–9390 (1996).

    Article  CAS  Google Scholar 

  20. Taub, I. A. & Eiben, K. Transient solvated electron, hydroxyl, and hydroperoxy radicals in pulse-irradiated crystalline ice. J. Chem. Phys. 49, 2499–2513 (1968).

    Article  ADS  CAS  Google Scholar 

  21. Noll, K. S., Johnson, R. E., McGrath, M. A. & Caldwell, J. J. Detection of SO2on Callisto with the Hubble Space Telescope. Geophys. Res. Lett. 24, 1139–1142 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Noll, K. S., Johnson, R. E., Lane, A. L., Domingue, D. L. & Weaver, H. A. Detection of ozone on Ganymede. Science 273, 341–343 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Lacombe, S. et al. Electron-induced synthesis of ozone in a dioxygen matrix. Phys. Rev. Lett. 79, 1146–1149 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. A. Kimmel for discussions. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Chemical Physics Program. Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle Memorial Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Orlando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieger, M., Simpson, W. & Orlando, T. Production of O2 on icy satellites by electronic excitation of low-temperature water ice. Nature 394, 554–556 (1998). https://doi.org/10.1038/29015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29015

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing