Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Are archaebacteria merely derived ‘prokaryotes’?

Abstract

The archaebacteria are a group of prokaryotes which seem as distinct from the true bacteria (eubacteria) as they are from eukaryotes1–4. The evidence on which this conclusion rests is of two types: genotypic (quantitative)—that is, comparative sequence studies, and phenotypic (qualitative)—that is, differences in various organismal characteristics. The differences between archaebacteria and true bacteria are so great, both quantitatively and qualitatively, that the two bacterial groups should be considered as representing separate primary lines of descent, each tracing directly back to the universal ancestor1,4. Furthermore, this ancestor itself seems not to be a prokaryote; rather it was a far simpler type of organism, one properly called a progenote5,6. If this is true, the discovery of archaebacteria marks a major advance in the biologist's attempts to understand the basis for the evolution of the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Woese, C. R. & Fox, G. E. Proc. natn. Acad. Sci. U.S.A. 74, 5088–5090 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Woese, C. R., Magrum, L. J. & Fox, G. E. J. molec. Evol. 11, 245–252 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. Microbiol. Rev. 43, 260–296 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fox, G. E. et al. Science 209, 457–463 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Woese, C. R. Symp. Soc. gen. Microbiol. 20, 39–54 (1970).

    CAS  Google Scholar 

  6. Woese, C. R. & Fox, G. E. J. molec. Evol. 10, 1–6 (1977).

    Article  ADS  CAS  Google Scholar 

  7. VanValen, L. M. & Maiorana, V. C. Nature 287, 248–250 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Margulis, L. Origin of Eucaryotic Cells (Yale University Press, New Haven, 1970).

    Google Scholar 

  9. Stanier, R. Y. Symp. Soc. gen. Microbiol. 20, 1–38 (1970).

    Google Scholar 

  10. Murray, R. G. E. in Bergey's Manual of Determinative Bacteriology 8th edn (eds Buchanan, R. E. & Gibbons, N. E.) (Williams & Wilkins, Baltimore, 1974).

    Google Scholar 

  11. Kandler, O. & König, H. Archis Microbiol. 118, 141–152 (1978).

    Article  CAS  Google Scholar 

  12. Kandler, O. Naturwissenschaften 66, 95–107 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Gupta, R. & Woese, C. R. Curr. Microbiol. (in the press).

  14. Langworthy, T. A. Biochim. biophys. Acta 487, 37–47 (1977).

    Article  CAS  Google Scholar 

  15. Tornabene, T. G. & Langworthy, T. A. Science 203, 51–53 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Zillig, W., Stetter, K. O. & Janekovic, P. Eur. J. Biochem. 96, 597–604 (1979).

    Article  CAS  Google Scholar 

  17. Zillig, W., Stetter, K. O. & Tobein, M. Eur. J. Biochem. 91, 193–199 (1978).

    Article  CAS  Google Scholar 

  18. Langworthy, T. A., Mayberry, W. R. & Smith, P. F. Biochim. biophys. Acta 431, 550–569 (1976).

    Article  CAS  Google Scholar 

  19. Woese, C. R., Maniloff, J. & Zablen, L. B. Proc. natn. Acad. Sci. U.S.A. 77, 494–498 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Eperon, I. C., Anderson, S. & Nierlich, D. P. Nature 286, 460–467 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Bonen, L. & Doolittle, W. F. Proc. natn. Acad. Sci. U.S.A. 72, 2310–2314 (1975).

    Article  ADS  CAS  Google Scholar 

  22. John, P. & Whatley, F. R. Nature 254, 495–498 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Flavell, R. Biochem. Genet. 6, 275–291 (1972).

    Article  CAS  Google Scholar 

  24. Heckman, J. E. et al. Cell 13, 83–95 (1978).

    Article  CAS  Google Scholar 

  25. Matheson, A. T., Moller, W., Amons, R. & Yaguchi, M. in Ribosomes: Structure, Function, and Genetics (eds Chamblis, G. et al. 297–315 (University Park Press, Baltimore, 1980).

    Google Scholar 

  26. Kessel, M. & Klink, F. Nature 287, 250–251 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Kwok, Y. & Wong, J.T-F. Can. J. Biochem. 58, 213–218 (1980).

    Article  CAS  Google Scholar 

  28. Steitz, J. A. Nature 273, 10 (1978).

    Article  ADS  CAS  Google Scholar 

  29. Woese, C. R. & Fox, G. E. Nature 273, 101 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woese, C., Gupta, R. Are archaebacteria merely derived ‘prokaryotes’?. Nature 289, 95–96 (1981). https://doi.org/10.1038/289095a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289095a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing