Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemical changes during dyke metamorphism in high-grade basement terrains

Abstract

Trace element geochemistry is an important tool in deciphering the petrogenesis of igneous, and particularly basaltic, igneous rocks, and in assigning a possible tectonic setting to these rocks1,2. Studies of the trace element geochemistry of metamorphosed igneous rocks often implicitly assume element immobility during metamorphism even though recent studies3–7 have demonstrated the sometimes quite extreme mobility of certain trace elements, and especially of the petrogenetically important rare-earth elements (REE), during low-grade (zeolite–greenschist facies) metamorphism. The mobility of trace elements at higher grades of metamorphism is poorly known, although there is some evidence8 for the mobility of large ion lithophile (LIL—Rb, K, Th, Ba, Sr) elements, but not the REE, during amphibolite fades metamorphism. The REE also seem to be stable through the amphibolite to granulite facies transition9,10. We have studied a suite of ultramafic to mafic dykes (the Scourie dykes) cutting regrogressed Lewisian granulites in the Assynt region, north-west Scotland11 and conclude that the mobility of trace elements is not controlled solely by the degree or grade of metamorphism, but more by the availability of a fluid phase for element transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pearce, J. A. & Cann, J. R. Earth planet Sci. Lett. 19, 290 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Winchester, J. A. & Floyd, P. A. Earth planet. Sci. Lett. 28, 459 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Herrmann, A. G., Potts, M. J. & Knake, D. Contr. Miner. Petrol. 44 (1974).

  4. Humphris, S. E., Morrison, M. A. & Thompson, R. N. Chem. Geol. 23, 125 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Ludden, J. N. & Thompson, G. Earth planet Sci. Lett. 43, 85 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Hellman, P. L., Smith, R. E. & Henderson, P. Contr. Miner. Petrol. 71, 23 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Nesbitt, H. W. Nature 279, 206 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Muecke, G. K., Pride, C. & Sarkar, P. Phys. Chem. Earth 11, 449 (1979).

    Article  Google Scholar 

  9. Green, T. H., Brunfelt, A. O. & Heier, K. S. Geochim. cosmochim. Acta 36, 241 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Compton, P. Contr. Miner. Petrol. 66, 283 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Tarney, J. in The Early Precambrian of Scotland and Related Rocks of Greenland (eds Park, R. G. & Tarney, J.) 105 (University of Keele, 1973).

    Google Scholar 

  12. Chapman, H. J. Nature 277, 642 (1979).

    Article  ADS  Google Scholar 

  13. Evans, C. R. & Tarney, J. Nature 204, 638 (1964).

    Article  ADS  Google Scholar 

  14. Tarney, J. Nature 199, 672 (1963).

    Article  ADS  Google Scholar 

  15. O'Hara, M. J. Miner. Mag. 32, 848 (1961).

    CAS  Google Scholar 

  16. O'Hara, M. J. J. geol. Soc. Lond. 134, 185 (1977).

    Article  CAS  Google Scholar 

  17. Sutton, J. & Watson, J. V. Geol. Mag. 88, 25 (1951).

    Article  ADS  Google Scholar 

  18. Weaver, B. L. & Tarney, J. (in preparation).

  19. Wood, D. A., Joron, J.-L., Treuil, M., Norry, M. J. & Tarney, J. Contr. Miner. Petrol. 70, 319 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Beach, A. & Tarney, J. Precamb. Res. 7, 325 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Donnelly, T. W., Thompson, G. & Robinson, P. T. Am. geophys. Un. Maurice Ewing Ser. 2, 369 (1979).

    Article  CAS  Google Scholar 

  22. Menzies, M., Seyfried, W. & Blanchard, D. Nature 282, 398 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Nakamura, N. Geochim. cosmochim. Acta 38, 757 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, B., Tarney, J. Chemical changes during dyke metamorphism in high-grade basement terrains. Nature 289, 47–49 (1981). https://doi.org/10.1038/289047a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289047a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing