Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the metal-ion-activated diphtheria toxin repressor/ tox operator complex

Abstract

The virulent phenotype of the pathogenic bacterium Corynebacterium diphtheriae is conferred by diphtheria toxin, whose expression is an adaptive response to low concentrations of iron. The expression of the toxin gene (tox) is regulated by the repressor DtxR (ref. 1), which is activated by transition metal ions. X-ray crystal structures of DtxR with2,3,4,5 and without (apo-form2) its coordinated transition metal ion have established the general architecture of the repressor, identified the location of the metal-binding sites, and revealed a metal-ion-triggered subunit–subunit ‘caliper-like’ conformational change. Here we report thethree-dimensional crystal structure of the complex between a biologically active Ni(ii)-bound DtxR(C102D) mutant, in whicha cysteine is replaced by an aspartate at residue 102, and a 33-base-pair DNA segment containing the toxin operator tox O. This structure shows that DNA interacts with two dimeric repressor proteins bound to opposite sides of the tox operator. We propose that a metal-ion-induced helix-to-coil structural transition in the amino-terminal region of the protein is partly responsible for the unique mode of repressor activation by transition metal ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The trans -regulated expression of the diphtheria toxin gene, tox, in C.diphtheriae.
Figure 2: Structure of the Ni(ii)-DtxR(C102D)- tox operator complex.
Figure 3: Repressor–DNA interactions.
Figure 4: Metal-binding sites.

Similar content being viewed by others

References

  1. Tao, X., Schiering, N., Zeng, H. Y., Ringe, D. & Murphy, J. R. Iron, DtxR, and the regulation of diphtheria toxin expression. Mol. Microbiol. 14, 191–197 (1994).

    Article  CAS  Google Scholar 

  2. Schiering, N.et al. Structures of the apo- and the metal ion-activated forms of the diphtheria tox repressor from Corynebacterium diphtheriae.. Proc. Natl Acad. Sci. USA 92, 9843–9850 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Ding, X., Zeng, H., Schiering, N., Ringe, D. & Murphy, J. R. Identification of the primary metal ion-activation sites of the diphtheria tox repressor by X-ray crystallography and site-directed mutational analysis. Nature Struct. Biol. 3, 382–387 (1996).

    Article  CAS  Google Scholar 

  4. Qiu, X.et al. Three-dimensional structure of the diphtheria toxin repressor in complex with divalent cation co-repressors. Structure 3, 87–100 (1995).

    Article  CAS  Google Scholar 

  5. Qiu, X., Pohl, E., Holmes, R. K. & Hol, W. G. High-resolution structure of the diphtheria toxin repressor complexed with cobalt and manganese reveals an SH3-like third domain and suggests a possible role of phosphate as a co-repressor. Biochemsitry 35, 12292–12302 (1996).

    Article  CAS  Google Scholar 

  6. Somers, W. S. & Phillips, S. E. V. Crystal structure of the met repressor–operator complex at 2.8 Å resolution reveals DNA recognition by β-strands. Nature 359, 387–393 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Tao, X. & Murphy, J. R. Binding of the metalloregulatory protein DtxR to the diphtheria tox operator requires a divalent heavy metal ion and protects the palindromic sequence from DNase I digestion. J. Biol. Chem. 267, 21761–21764 (1992).

    CAS  PubMed  Google Scholar 

  8. Must, L. M., Twiddy, E. M., Sabol, S. Z. & Holmes, R. K. in Bacterial Protein Toxins Vol. 6(eds Hacker, J., Rappuoli, R., Alouf, J., Fehernbach, F. & Feer, J.) (Fisher Stuttgart, Germany, in the press).

  9. Tao, X. & Murphy, R. R. Cysteine-102 is positioned in the metal binding activation site of the Corynebacterium diphtheriae regulatory element DtxR. Proc. Natl Acad. Sci. USA 90, 8524–8528 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Kercher, M. A., Lu, P. & Lewis, M. Lac repressor–operator complex. Curr. Opin. Struct. Biol. 7, 76–85 (1997).

    Article  CAS  Google Scholar 

  11. Albright, R. A. & Matthews, B. W. How Cro and λ-repressor distinguish between operators: The structural basis underlying a genetic switch. Proc. Natl Acad. Sci. USA 95, 3431–3436 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Schmitt, M. P. & Holmes, R. K. Analysis of diphtheria toxin repressor-operator interactions and characterization of a mutant repressor with decreased binding activity for divalent metals. Mol. Microbiol. 9, 173–181 (1993).

    Article  CAS  Google Scholar 

  13. Wang, Z., Schmitt, M. P. & Holmes, R. K. Characterization of mutations that inactivate the diphtheria toxin repressor gene (dtxR). Infect. Immun. 62, 1600–1608 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tao, X., Zeng, H. Y. & Murphy, J. R. Transition metal ion activation of DNA binding by the diphtheria tox repressor requires the formation of stable homodimers. Proc. Natl Acad. Sci. USA 92, 6803–6807 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Otwinowski, Z.et al. Crystal structure of trp repressor/operator complex at atomic resolution. Nature 335, 321–329 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Lawson, C. L. & Carey, J. Tandem binding in crystals of a trp repressor/operator half-site complex. Nature 366, 178–182 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Zhang, H.et al. The solution structure of the trp repressor-operator DNA complex. J. Mol. Biol. 238, 592–614 (1994).

    Article  CAS  Google Scholar 

  18. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  19. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  20. Collaborative Computational Project Number 4. The CCP4 suite: Programs for protein crystallography Version 3.1. Acta Crystallogr. D 50, 760–763 (1994).

  21. Brünger, A. T., Kuriyan, J. & Karplus, M. Crystallographic R -factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  22. Hodel, A., Kim, S.-H. & Brünger, A. T. Model bias in macromolecular crystal structures. Acta Crystallogr. A 48, 851–858 (1992).

    Article  Google Scholar 

  23. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  24. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  25. Engh, R. A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. A 47, 392–400 (1991).

    Article  Google Scholar 

  26. Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  ADS  Google Scholar 

  27. Boyd, J., Oza, M. N. & Murphy, J. R. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae. Proc. Natl Acad. Sci. USA 87, 5968–5972 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Ravishankar, G., Swaminathan, S., Beveridge, D. L., Lavery, R. & Sklenar, H. Conformational and helical analysis of 30ps of molecular dynamics on the d(CGCGAATTCGCG) double helix: ‘Curves’, dials and windows. J. Biomol. Struct. Dynam. 6, 669–699 (1989).

    Article  Google Scholar 

  29. Kraulis, P. J. MOLSCRIPT: A program package to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  30. Read, R. J. Improved fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Public Health Service Grant from the National Institute of Allergy and Infectious Diseases and (in part) by a grant from the Lucille P. Markey Charitable Trust. We thank M. Stanton and Y. Wang for help with data collection, D. Peisach and E. Peisach for rendering images, and N. Schiering, S. Chen and G. A. Petsko for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Ringe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, A., Ding, X., vanderSpek, J. et al. Structure of the metal-ion-activated diphtheria toxin repressor/ tox operator complex. Nature 394, 502–506 (1998). https://doi.org/10.1038/28893

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28893

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing