Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells

Abstract

The plasma tripeptide glycyl-L-histidyl-L-lysine (GHL), when added at nanomolar concentrations to a wide group of cultured systems, produces a disparate set of responses ranging from the stimulation of growth and differentiation to outright toxicity1–3. Such diverse actions imply that this tripeptide mediates some basic biochemical function common to many types of cells and organisms. During the isolation of GHL we found the compound to co-isolate through a number of steps with approximately equimolar copper and about 1/5 molar iron1. Maximal effects on hepatoma cells (HTC4) were seen when the peptide was added with copper and iron to the growth medium1. Structure–function studies revealed that several tripeptides with a histidyl-lysyl linkage were nearly as active as GHL1. The association of GHL with copper and a homology similarity between the tripeptide and the copper transport sites on albumin and α-fetoprotein, where the cupric atom is bound to a histidyl residue adjacent to a basic residue, suggested that GHL may act as a copper transport factor4. We report here that the tripeptide readily forms complexes with copper(II) and enhances the uptake of the metal into cultured hepatoma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pickart, L. & Thaler, M. Nature new Biol. 243, 85–87 (1973); J. Chromat. 175, 65–73 (1979); FEBS Lett. 104, 119–122 (1979); J. cell Physiol. 102, 129–139 (1980).

    CAS  PubMed  Google Scholar 

  2. Schlesinger, D. H., Pickart, L. & Thaler, M. Experientia 33, 324–325 (1977).

    Article  CAS  Google Scholar 

  3. Pickart, L., Thayer, L. & Thaler, M. Biochem. biophys. Res. Commun. 54, 562–566 (1973).

    Article  CAS  Google Scholar 

  4. Aoyagi, T., Ikenaka, T. & Ichida, F. Cancer Res. 38, 3483–3486 (1978).

    CAS  PubMed  Google Scholar 

  5. Peisach, J. in Mechanisms of Oxidizing Enzymes (eds Singer, T. P. & Ondarza, R. N.) 385–406 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  6. Ambesi-Impiombato, F. S., Parks, L. A. M. & Coon, H. G. Proc. natn. Acad. Sci. U.S.A. 77, 3455–3459 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Robertson, J. A. J. clin. Microbiol. 7, 127–132 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Stromberg, B. E., Khoury, P. B. & Soulsby, E. J. L. Int. J. Parasit. 7, 149–151 (1977).

    Article  CAS  Google Scholar 

  9. Dessaint, J. P., Camus, D., Fischer, E. & Capron, A. Eur. J. Immun. 7, 624–629 (1977).

    Article  CAS  Google Scholar 

  10. Sensenbrenner, M., Jaros, G. G., Moonen, G. & Mandel, P. Neurobiology 5, 207–213 (1975).

    CAS  PubMed  Google Scholar 

  11. Lindner, G., Grosse, G. & Henklein, P. Z. mikrosk.-anat. Forsch. 93, 820–828 (1979).

    CAS  PubMed  Google Scholar 

  12. Simon, W. E. & Holzel, F. J. Cancer Res. clin. Oncol. 94, 307–323 (1979).

    Article  CAS  Google Scholar 

  13. Capron, M., Capron, A., Torpier, G., Bazin, H., Bout, D. & Joseph, M. Eur. J. Immun. 8, 127–133 (1978).

    Article  CAS  Google Scholar 

  14. Svanberg, L. & Astedt, B. Experientia 35, 818–819 (1979).

    Article  CAS  Google Scholar 

  15. Leung, M. K., Fessier, L. J., Greenberg, D. B. & Fessler, J. H. J. biol. Chem. 254, 224–232 (1979).

    CAS  PubMed  Google Scholar 

  16. Astedt, B., Barlow, G. & Holmberg, L. Thromb. Res. 11, 149–153 (1977).

    Article  CAS  Google Scholar 

  17. Eriksson, S., Alm, R. & Astedt, B. Biochim. biophys. Acta 542, 496–505 (1978).

    Article  CAS  Google Scholar 

  18. Joseph, M., Dessaint, J. P. & Capron, A. Cell Immun. 34, 247–258 (1977).

    Article  CAS  Google Scholar 

  19. Capron, M., Rousseaux, J., Mazingue, C., Bazin, H. & Capron, A. J. Immun. 121, 2518–2526 (1978).

    CAS  PubMed  Google Scholar 

  20. Mazingue, C., Dessaint, J. P. & Capron, A. J. immun. Meth. 21, 65–77 (1978).

    Article  CAS  Google Scholar 

  21. Holmberg, L., Lecander, L., Persson, B. & Astedt, B. Biochim. biophys. Acta 544, 128–137 (1978).

    Article  CAS  Google Scholar 

  22. Slotta, K. H., Golub, A. L. & Lopez, V. Hoppe-Seyler's Z. physiol. Chem. 356, 367–376 (1975).

    Article  CAS  Google Scholar 

  23. Torpier, G., Quaissi, M. A. & Capron, A. J. ultrastruct. Res. 67, 276–287 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickart, L., Freedman, J., Loker, W. et al. Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells. Nature 288, 715–717 (1980). https://doi.org/10.1038/288715a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288715a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing