Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis

An Erratum to this article was published on 01 October 1998


As a result of deprivation of oxygen (hypoxia) and nutrients, the growth and viability of cells is reduced1. Hypoxia-inducible factor(HIF)-1α helps to restore oxygen homeostasis by inducing glycolysis, erythropoiesis and angiogenesis2,3,4. Here we show that hypoxia and hypoglycaemia reduce proliferation and increase apoptosis in wild-type (HIF-1α+/+) embryonic stem (ES) cells, but not in ES cells with inactivated HIF-1α genes (HIF-1α−/−); however, a deficiency of HIF-1α does not affect apoptosis induced by cytokines. We find that hypoxia/hypoglycaemia-regulated genes involved in controlling the cell cycle are either HIF-1α-dependent (those encoding the proteins p53, p21, Bcl-2) or HIF-1α-independent (p27, GADD153), suggesting that there are at least two different adaptive responses to being deprived of oxygen and nutrients. Loss of HIF-1α reduces hypoxia-induced expression of vascular endothelial growth factor, prevents formation of large vessels in ES-derived tumours, and impairs vascular function, resulting in hypoxic microenvironments within the tumour mass. However, growth of HIF-1α tumours was not retarded but was accelerated, owing to decreased hypoxia-induced apoptosis and increased stress-induced proliferation. As hypoxic stress contributes to many (patho)biological disorders1,5, this new role for HIF-1α in hypoxic control of cell growth and death may be of general pathophysiological importance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Targeting of the HIF-1α gene.
Figure 2: Vascularization of HIF-1α−/− and rHIF-1α+/+ tumours.
Figure 3: Functional vascularization and growth of HIF-1α−/− and rHIF-1α+/+ tumours.


  1. 1

    Bunn, H. F. & Poyton, R. O. Oxygen sensing and molecular adaptation to hyopoxia. Physiol. Rev. 76, 839–885 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Wenger, R. H. & Gassmann, M. Oxygen(s) and the hypoxia-inducible factor-1. Biol. Chem. 378, 609–616 (1997).

    CAS  PubMed  Google Scholar 

  3. 3

    Semenza, G. L. Transcriptional regulation by hypoxia-inducible factor-1. Trends Cardiovasc. Med. 6, 151–157 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Iyer, N. al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor-1α. Genes Dev. 12, 149–162 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Dor, Y. & Keshet, E. Ischemia-driven angiogenesis. Trends Cardiovasc. Med. 7, 289–294 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Gartel, A. L., Serfas, M. S. & Tyner, A. L. p21–negative regulator of the cell cycle. Proc. Soc. Exp. Biol. Med. 213, 138–149 (1996).

    CAS  Article  Google Scholar 

  7. 7

    Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67–74 (1994).

    CAS  Article  Google Scholar 

  8. 8

    Price, B. D. & Calderwood, S. K. Gadd45 and Gadd153 messenger RNA levels are increased during hypoxia and after exposure of cells to agents which elevate the levels of the glucose-regulated proteins. Cancer Res. 52, 3814–3817 (1992).

    CAS  PubMed  Google Scholar 

  9. 9

    Little, E., Ramakrishnan, M., Roy, B., Gazit, G. & Lee, A. S. The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit. Rev. Eukaryot. Gene Expr. 4, 1–18 (1994).

    Article  Google Scholar 

  10. 10

    Wood, S. al. Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-1α subunit. Characterization of HIF-1α dependent and independent hypoxia-inducible gene expression. J. Biol. Chem. 273, 8360–8367 (1998).

    CAS  Article  Google Scholar 

  11. 11

    Liebermann, D. A., Hoffman, B. & Steinman, R. A. Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11, 199–210 (1995).

    CAS  PubMed  Google Scholar 

  12. 12

    Cox, L. S. Multiple pathways control cell growth and transformation: overlapping and independent activities of p53 and p21Cip1/WAF1/Sdi1. J. Pathol. 183, 134–140 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Graeber, T. al. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol. 14, 6264–6277 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Strasser, A., Huang, D. C. & Vaux, D. L. The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumorigenesis and resistance to chemotherapy. Biochim. Biophys. Acta 1333, F151–178 (1997).

    CAS  PubMed  Google Scholar 

  15. 15

    Maxwell, P. al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl Acad. Sci. USA 94, 8104–8109 (1997).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A. & Simon, C. M. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407 (1997).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Schmaltz, C., Harrigan Hardenbergh, P., Wells, A. & Fisher, D. E. Regulation of proliferation–survival decisions during tumor cell hypoxia. Mol. Cell. Biol. 18, 2845–2854 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Collins, M. K., Perkins, G. R., Rodriguez Tarduchy, G., Nieto, M. A. & Lopez Rivas, A. Growth factors as survival factors: regulation of apoptosis. Bioessays 16, 133–138 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Lin, Y. & Benchimol, S. Cytokines inhibit p53-mediated apoptosis but not p53-mediated G1 arrest. Mol. Cell. Biol. 15, 6045–6054 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Vaupel, P. The influence of tumor blood flow and microenvironmental factors on the efficacy of radiation, drugs and localized hyperthermia. Klin. Pädiatr. 209, 243–249 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Yuan, al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl Acad. Sci. USA 93, 14765–14770 (1996).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Graeber, T. al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and p O2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. 3, 177–182 (1997).

    CAS  Article  Google Scholar 

  24. 24

    An, W. al. Stabilization of wild-type p53 by hypoxia-inducible factor-1α. Nature 392, 405–408 (1998).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Jiang, B. H., Rue, E., Wang, G. L., Roe, R. & Semenza, G. L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor-1. J. Biol. Chem. 271, 17771–17778 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Carmeliet, al. Abnormal blood vessel development and lethality in embryos lacking a single vascular endothelial growth-factor allele. Nature 380, 435–439 (1996).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Abramovitch, R., Frenkiel, D. & Neeman, M. Analysis of subcutaneous angiogenesis by gradient echo magnetic resonance imaging. Magn. Reson. Med. 39, 813–824 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Kobayashi, N., Kobayashi, K., Kouno, K., Horinaka, S. & Yagi, S. Effects of intra-arterial injection of colored microspheres on systemic hemodynamics and regional blood flow in rats. Am. J. Physiol. 266, H1910–H1917 (1994).

    CAS  PubMed  Google Scholar 

  29. 29

    Evans, S. al. Identification of hypoxia in cells and tissues of epigastric 9L rat glioma using EF5 (2-(2-nitro-1H-imidazol-1-yl)- N -(2,2,3,3,3-pentafluoropropyl) acetamide). Br. J. Cancer 72, 875–882 (1995).

    CAS  Article  Google Scholar 

  30. 30

    Herbert, J. M. & Carmeliet, P. Involvement of u-PA in the anti-apoptotic activity of TGFβ for vascular smooth muscle cells. FEBS Lett. 413, 401–404 (1997).

    CAS  Article  Google Scholar 

Download references


We thank D. Livingston for monoclonal HIF-1α antibodies; M. Lampugnani and E.Dejana for CD31 antibodies; E. M. Lord for ALK3.51 antibodies; G. Suske for Sp1 antibodies; S.Plaisance and G. Theilmeier for discussion and for their help; K. Bijnens, A. Bouché, I. Cornelissen, M.De Mol, E. Gils, B. Hermans, S. Jansen, L. Kieckens, A. Manderveld, T. Vancoetsem, A. Vandenhoeck, A. Van den Boomen, P. Van Wesemael, S. Wyns (Leuven), A. Itin, I. Lamarche, P. Rogon, Y. Chen, J. Kahn and T.Gohongi for technical assistance; and M. Deprez for artwork. This work was supported in part by a NCI-OIG grant to R.J. and D.F.

Author information



Corresponding author

Correspondence to Peter Carmeliet.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carmeliet, P., Dor, Y., Herbert, J. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing