Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Post-transcriptional regulation of gene expression in guinea pig tissues

Abstract

The formation of individual functional mRNA sequences in higher organisms requires many steps in addition to transcription. These include RNA splicing, polyadenylation, base modification, transport from nucleus to cytoplasm and assembly into polyribosomes. Various control mechanisms must also operate. These will function on a quantitative basis to account for the differing frequency of the various classes of cytoplasmic mRNAs, and also on a qualitative basis, because in higher organisms not all the nuclear poly (A)-containing RNA molecules are found in a cytoplasmic poly(A)-containing RNA population from the same tissue1–10. During our studies on the mechanisms controlling the accumulation of the poly (A)-containing RNA sequences which occur with high and moderately high frequency in the cytoplasm of the lactating guinea pig mammary gland, it became apparent that >75% of the 20,000 or so poly (A)-containing nuclear RNA sequences were not found in the cytoplasmic poly(A)-containing RNA fraction4. Here we demonstrate that many of the poly(A)-containing RNA sequences retained in the nucleus of the lactating guinea pig mammary gland are also present in the nucleus and cytoplasm of the liver of the male guinea pig. These observations provide new evidence for a predominant role of post-transcriptional mechanisms in the regulation of structural gene expression in guinea pig tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davidson, E. H. & Britten, R. J. Science 204, 1052–1059 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Lowenhaupt, K. & Lingrel, J. B. Cell 14, 337–344 (1978).

    Article  CAS  Google Scholar 

  3. Guyette, W. A., Matusik, R. J. & Rosen, J. M. Cell 17, 1013–1023 (1979).

    Article  CAS  Google Scholar 

  4. Bathurst, I. C., Craig, R. K., Herries, D. G. & Campbell, P. N. Eur. J. Biochem. 109, 183–191 (1980).

    Article  CAS  Google Scholar 

  5. Bathurst, I. C., Craig, R. K., Herries, D. G. & Campbell, P. N. Biochem. J. 192, 489–498 (1980).

    Article  CAS  Google Scholar 

  6. Bathurst, I. C. thesis, Univ. London (1980).

  7. Craig, R. K., Boulton, A. P., Harrison, O. S., Parker, D. & Campbell, P. N. Biochem. J. 181, 737–759 (1979).

    Article  CAS  Google Scholar 

  8. Kleene, K. C. & Humphreys, T. Cell 12, 143–155 (1977).

    Article  CAS  Google Scholar 

  9. Galau, G. A. et al. Cell 7, 487–505 (1976).

    Article  CAS  Google Scholar 

  10. Balmain, A., Minty, A. J. & Birnie, G. D. Nucleic Acids Res. 8, 1643–1660 (1980).

    Article  CAS  Google Scholar 

  11. Gilmour, R. S., Harrison, P. A., Windass, J. D., Affara, N. A. & Paul, J. Cell. Differentiation 3, 9–22 (1974).

    Article  CAS  Google Scholar 

  12. Groudine, M. & Weintraub, H. Proc. natn. Acad. Sci. U.S.A. 72, 4464–4468 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Humphries, S., Windass, J. & Williamson, R. Cell 7, 267–277 (1976).

    Article  CAS  Google Scholar 

  14. Gottesfeld, J. M. & Partington, G. H. Cell 12, 953–962 (1977).

    Article  CAS  Google Scholar 

  15. Perlman, S. M., Ford, P. J. & Rosbash, M. M. Proc. natn. Acad. Sci. U.S.A. 74, 3835–3839 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Tsai, S. Y., Tsai, M. J., Lin, C.-T. & O'Malley, B. W. Biochemistry 18, 5726–5731 (1979).

    Article  CAS  Google Scholar 

  17. Lev, Z. et al. Devl Biol. 76, 322–340 (1980).

    Article  CAS  Google Scholar 

  18. Van Berkel, T. J. C. Trends biochem. Sci. 4, 202–205 (1979).

    Article  CAS  Google Scholar 

  19. Pitelka, D. R. in Lactation Vol. 4 (ed. Larson, B. L.) 41–66 (1978).

    Google Scholar 

  20. Axel, R., Feigelson, P. & Schutz, G. Cell 7, 247–254 (1976).

    Article  CAS  Google Scholar 

  21. Hastie, N. D. & Bishop, J. O. Cell 9, 761–774 (1976).

    Article  CAS  Google Scholar 

  22. Wickens, M. P., Woo, S., O'Malley, B. W. & Gurdon, J. B. Nature 285, 628–634 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Hamer, D. H. & Leder, P. Cell 18, 1299–1302 (1979).

    Article  CAS  Google Scholar 

  24. Early, R. et al. Cell 20, 313–319 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, R., Bathurst, I. & Herries, D. Post-transcriptional regulation of gene expression in guinea pig tissues. Nature 288, 618–619 (1980). https://doi.org/10.1038/288618a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288618a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing