Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice

Abstract

There is both theoretical and therapeutic interest in establishing whether the signals conveyed by the enkephalins are turned off under the action of a specific peptidase which might, in this case, represent a target for a new class of psychoactive agents. Enkephalinase, a dipeptidyl carboxypeptidase cleaving the Gly3-Phe4 bond of enkephalins1,2 and distinct from angiotensin converting enzyme (ACE)3–6, might be selectively involved in enke-phalinergic transmission. It is a membrane-bound enzyme1,7,8 whose localization in the vicinity of opiate receptors in the central nervous system is suggested by parallel regional1,7,9 and subcellular10 distributions as well as by the effects of lesions9. Such a role is further supported by the ontogenetic development of enkephalinase11,12, its substrate specificity accounting for the increased biological activity of several enkephalin analogues13 and its adaptive increase following chronic treatment with morphine1,14. To investigate the functional role of this enzyme further, we have designed a potent and specific enkephalinase inhibitor. We report here that this compound, thiorphan [(DL-3-mercapto-2-benzylpropanoyl)-glycine; patent no. 8008601] protects the enkephalins from the action of enkephalinase in vitro in nanomolar concentration and in vivo after either intracerebroventricular or systemic administration. In addition, thiorphan itself displays antinociceptive activity which is blocked by naloxone, an antagonist of opiate receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Malfroy, B., Swerts, J. P., Guyon, A., Roques, B. P. & Schwartz, J-C. Nature 276, 523–526 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Guyon, A. et al. Life Sci. 25, 1605–1612 (1979).

    Article  CAS  Google Scholar 

  3. Swerts, J. P., Perdrisot, R., Malfroy, B. & Schwartz, J-C. Eur. J. Pharmac. 53, 209–210 (1979).

    Article  CAS  Google Scholar 

  4. Swerts, J. P., Perdrisot, R., Patey, G., De La Baume, S. & Schwartz, J-C. Eur. J. Pharmac. 57, 279–281 (1979).

    Article  CAS  Google Scholar 

  5. Sullivan, S., Akil, H., Blacker, D. & Barchas, J. D. in Endogenous and Exogenous Opiate Agonists and Antagonists (ed. Way, E. L.) 357–360 (Pergamon, New York, 1980).

    Book  Google Scholar 

  6. Gorenstein, C. & Snyder, S. H. Life Sci. 25, 2065–2070 (1979).

    Article  CAS  Google Scholar 

  7. Sullivan, S., Akil, H. & Barchas, J. D. Commun. Psychopharmac. 2, 525–531 (1979).

    Google Scholar 

  8. Vogel, Z. & Altstein, M. in Endogenous and Exogenous Opiate Agonists and Antagonists (ed. Way, E. L.) 353–356 (Pergamon, New York, 1980).

    Book  Google Scholar 

  9. Malfroy, B., Swerts, J. P., Llorens, C. & Schwartz, J-C. Neurosci. Lett. 11, 329–334 (1979).

    Article  CAS  Google Scholar 

  10. De La Baume, S., Patey, G. & Schwartz, J-C. Neuroscience (in the press).

  11. De La Baume, S., Patey, G., Gros, C. & Schwartz, J-C. in Endogenous and Exogenous Opiate Agonists and Antagonists (ed. Way, E. L.) 179–182 (Pergamon, New York, 1980).

    Book  Google Scholar 

  12. Patey, G., De La Baume, S., Gros, C. & Schwartz, J-C. Life Sci. 27, 245–252 (1980).

    Article  CAS  Google Scholar 

  13. Fournie-Zaluski, M. C. et al. Biochem. biophys. Res. Commun. 91, 130–135 (1979).

    Article  CAS  Google Scholar 

  14. Schwartz, J-C. et al. Adv. Biochem. Psychopharmac. 22, 219–235 (1980).

    CAS  Google Scholar 

  15. Quiocho, F. A. & Lipscomb, W. N. Adv. Protein Chem. 15, 1–48 (1971).

    Google Scholar 

  16. Ondetti, M. A., Rubin, B. & Cushman, D. W. Science 196, 441–444 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Ondetti, M. A. et al. Biochemistry 18, 1427–1430 (1979).

    Article  CAS  Google Scholar 

  18. Yang, H. Y. T. & Neff, N. H. J. Neurochem. 19, 2443–2450 (1972).

    Article  CAS  Google Scholar 

  19. Erdos, E. G., Johnson, A. R. & Boyden, N. T. Biochem. Pharmac. 27, 843–848 (1978).

    Article  CAS  Google Scholar 

  20. Hambrook, J. M., Morgan, B. A., Rance, M. J. & Smith, C. F. Nature 262, 782–783 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Lane, A. C., Ranee, M. J. & Walter, D. S. Nature 269, 75–76 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Marks, N., Grynbaum, A. & Neidle, A. Biochem. biophys. Res. Commun. 74, 1552–1559 (1977).

    Article  CAS  Google Scholar 

  23. Meek, J. L., Yang, H. Y. T. & Costa, E. Neuropharmacology 16, 151–154 (1977).

    Article  CAS  Google Scholar 

  24. Vogel, Z. & Alstein, M. FEBS Lett. 80, 332–336 (1977).

    Article  CAS  Google Scholar 

  25. Knight, M. & Klee, W. A. J. biol. Chem. 253, 3843–3847 (1978).

    CAS  PubMed  Google Scholar 

  26. Guyon, A. et al. Biochem. biophys. Res. Commun. 88, 919–926 (1979).

    Article  CAS  Google Scholar 

  27. Pert, C. B., Pert, A., Chang, J. K. & Fong, B. T. W. Science 194, 331–332 (1976).

    Article  ADS  Google Scholar 

  28. Ben-Bassat, J., Peretz, E. & Sulman, F. G. Archs int. Pharmacodyn. Ther. 122, 434–477 (1959).

    CAS  Google Scholar 

  29. Jacob, J., Tremblay, E. C. & Colombel, M. C. Psychopharmacologia 37, 217–223 (1974).

    Article  CAS  Google Scholar 

  30. Goldstein, A., Pryor, G. T., Otis, L. S. & Larson, F. Life Sci. 18, 599–604 (1976).

    Article  CAS  Google Scholar 

  31. Sewell, R. D. E. & Spencer, P. S. J. Neuropharmacology 15, 683–688 (1976).

    Article  CAS  Google Scholar 

  32. Frederickson, R. C. A., Bergers, V. & Edwards, J. D. Science 198, 756–757 (1977).

    Article  ADS  CAS  Google Scholar 

  33. Woolf, C. J. Brain Res. 190, 578–583 (1980).

    Article  ADS  CAS  Google Scholar 

  34. Eddy, N. B., May, E. L. & Mosettig, E. J. org. Chem. 17, 321–326 (1952).

    Article  CAS  Google Scholar 

  35. Jacob, J. & Blozovski, M. Archs int. Pharmacodyn. Ther. 133, 296–309 (1961).

    CAS  Google Scholar 

  36. Stine, S. M., Yang, H. Y. T. & Costa, E. Brain Res. 188, 295–299 (1980).

    Article  CAS  Google Scholar 

  37. Llorens, C. et al. Biochem. biophys. Res. Commun. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roques, B., Fournié-Zaluski, M., Soroca, E. et al. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 288, 286–288 (1980). https://doi.org/10.1038/288286a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288286a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing