Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gaia and natural selection

Abstract

Evidence indicates that the Earth self-regulates at a state that is tolerated by life, but why should the organisms that leave the most descendants be the ones that contribute to regulating their planetary environment? The evolving Gaia theory focuses on the feedback mechanisms, stemming from naturally selected traits of organisms, that could generate such self-regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of life on the Earth's atmosphere.
Figure 2: A hierarchy of environmental feedbacks.
Figure 4: The original Daisyworld model.
Figure 5: A simple model of biological amplification of weathering.
Figure 3: Model for mutating Daisyworld.

Similar content being viewed by others

References

  1. Lovelock, J. E. The Ages of Gaia 2nd edn (Oxford Univ. Press, Oxford, (1995).

    Google Scholar 

  2. Darwin, C. The Origin of Species (John Murray, London, (1959).

    Google Scholar 

  3. Doolittle, W. F. Is Nature really motherly? CoEvol. Quart.Spring, 58–63 (1981).

  4. Lovelock, J. E. Aphysical basis for life detection experiments. Nature 207, 568–570 (1965).

    ADS  CAS  PubMed  Google Scholar 

  5. Hitchcock, D. R. & Lovelock, J. E. Life detection by atmospheric analysis. Icarus 7, 149–159 (1967).

    ADS  Google Scholar 

  6. Lovelock, J. E. Thermodynamics and the recognition of alien biospheres. Proc. R. Soc. Lond. B 189, 167–181 (1975).

    ADS  CAS  Google Scholar 

  7. Lovelock, J. E. Gaia as seen through the atmosphere. Atmos. Environ. 6, 579–580 (1972).

    ADS  Google Scholar 

  8. Watson, A. J., Lovelock, J. E. & Margulis, L. Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems 10, 293–298 (1978).

    CAS  PubMed  Google Scholar 

  9. Newman, M. J. & Rood, R. T. Implications of solar evolution for the Earth's early atmosphere. Science 198, 1035–1037 (1977).

    ADS  CAS  PubMed  Google Scholar 

  10. Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996).

    ADS  CAS  PubMed  Google Scholar 

  11. Walker, J. C. G., Hays, P. B. & Kasting, J. F. Anegative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    ADS  CAS  Google Scholar 

  12. Lovelock, J. E. & Margulis, L. Atmospheric homeostasis by and for the biosphere: the gaia hypothesis. Tellus 26, 2–10 (1974).

    ADS  CAS  Google Scholar 

  13. Margulis, L. & Lovelock, J. E. Biological modulation of the Earth's atmosphere. Icarus 21, 471–489 (1974).

    ADS  CAS  Google Scholar 

  14. Lovelock, J. E. & Margulis, L. Homeostatic tendencies of the Earth's atmosphere. Origins Life 5, 93–103 (1974).

    ADS  CAS  Google Scholar 

  15. Lovelock, J. E., Maggs, R. J. & Rasmussen, R. A. Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 237, 452–453 (1972).

    ADS  CAS  Google Scholar 

  16. Lovelock, J. E., Maggs, R. J. & Wade, R. J. Halogenated hydrocarbons in and over the Atlantic. Nature 241, 194–196 (1973).

    ADS  CAS  Google Scholar 

  17. Lovelock, J. E. Gaia — A New Look at Life on Earth (Oxford Univ. Press, (1979).

    Google Scholar 

  18. Whitfield, M. The world ocean: mechanism or machination? Interdisc. Sci. Rev. 6, 12–35 (1981).

    CAS  Google Scholar 

  19. Dawkins, R. The Extended Phenotype (Oxford Univ. Press, (1983).

    Google Scholar 

  20. Lovelock, J. E. in Biomineralisation and Biological Metal Accumulation (eds Westbroek, P. & de Jong, E. W.) 15–25 (Reidel, Dordrecht, (1983).

    Google Scholar 

  21. Watson, A. J. & Lovelock, J. E. Biological homeostasis of the global environment: the parable of Daisyworld. Tellus 35B, 284–289 (1983).

    ADS  Google Scholar 

  22. Lovelock, J. E. Geophysiology: a new look at earth science. Bull. Am. Meteorol. Soc. 67, 392–397 (1986).

    Google Scholar 

  23. Kerr, R. A. No longer willful, Gaia becomes respectable. Science 240, 393–395 (1988).

    ADS  CAS  PubMed  Google Scholar 

  24. Lovelock, J. E. Hands up for the Gaia hypothesis. Nature 344, 100–102 (1990).

    ADS  Google Scholar 

  25. Lovelock, J. E. Geophysiology, the science of Gaia. Rev. Geophys. 27, 215–222 (1989).

    ADS  Google Scholar 

  26. Kump, L. R. & Lovelock, J. E. in Future Climates of the World: A Modelling Perspective (ed. Henderson-Sellers, A.) 537–553 (Elsevier, Oxford, (1995).

    Google Scholar 

  27. Alvarez, W. et al. Impact theory of mass extinctions and the invertebrate fossil record. Science 223, 1135–1141 (1984).

    ADS  CAS  PubMed  Google Scholar 

  28. Officer, C. B., Hallam, A., Drake, C. L. & Devine, J. D. Late Cretaceous and paroxysmal Cretaceous/Tertiary extinctions. Nature 326, 143–149 (1987).

    ADS  Google Scholar 

  29. Rampino, M. R. Impact cratering and flood basalt volcanism. Nature 327, 468 (1987).

    ADS  Google Scholar 

  30. Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982).

    ADS  CAS  PubMed  Google Scholar 

  31. Rampino, M. R. & Volk, T. Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary. Nature 332, 63–65 (1988).

    ADS  CAS  Google Scholar 

  32. Watson, A. J. Gaia. New Sci. Inside Science 48, 1–4 (1991).

    Google Scholar 

  33. Ehrlich, P. in Scientists on Gaia (eds Schneider, S. H. & Boston, P. J.) 19–22 (MIT, London, (1991).

    Google Scholar 

  34. Schneider, S. H. & Londer, R. The Coevolution of Climate and Life (Sierra Club, San Francisco, (1984).

    Google Scholar 

  35. Holland, H. D. The Chemcial Evolution of the Atmosphere and the Oceans (Princeton Univ. Press, NJ, (1984).

    Google Scholar 

  36. Budyko, M. I. The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (1969).

    ADS  Google Scholar 

  37. Caldeira, K. & Kasting, J. F. Susceptibility of the early Earth to irreversible glaciations caused by carbon dioxide clouds. Nature 359, 226–228 (1992).

    ADS  CAS  PubMed  Google Scholar 

  38. Rye, R., Kuo, P. H. & Holland, H. D. Atmospheric carbon dioxide concentraitons before 2.2 billion years ago. Nature 378, 603–605 (1995).

    ADS  CAS  PubMed  Google Scholar 

  39. Hayes, J. M. in Early Life on Earth, Nobel Symposium No. 84 (ed. Bengtson, S.) 220–236 (Columbia Univ. Press, New York, (1994).

    Google Scholar 

  40. Evans, D. A., Beukes, N. J. & Kirschvink, J. L. Low-latitude glaciation in the Palaeoproterozoic era. Nature 386, 262–266 (1997).

    ADS  CAS  Google Scholar 

  41. Schrodinger, E. What is Life? (Cambridge Univ. Press, (1944).

    Google Scholar 

  42. DeDuve, C. Vital Dust (Basic, New York, (1995).

    Google Scholar 

  43. Lovelock, J. E. Geophysiology. Trans. R. Soc. Edinb. Earth Sci. 80, 169–175 (1989).

    Google Scholar 

  44. Lovelock, J. E. & Whitfield, M. Life span of the biosphere. Nature 296, 561–563 (1982).

    ADS  CAS  Google Scholar 

  45. Lovelock, J. E. & Watson, A. J. The regulation of carbon dioxide and climate: Gaia or geochemistry. Planet. Space Sci. 30, 795–802 (1982).

    ADS  CAS  Google Scholar 

  46. Schwartzman, D. W. & Volk, T. Biotic enhancement of weathering and the habitabiity of Earth. Nature 340, 457–460 (1989).

    ADS  Google Scholar 

  47. Schwartzman, D. W. & Volk, T. Biotic enhancement of weathering and surface temperatures on earth since the origin of life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 90, 357–371 (1991).

    Google Scholar 

  48. Lovelock, J. E. Anumerical model for biodiversity. Phil. Trans. R. Soc. Lond. B 338, 383–391 (1992).

    ADS  Google Scholar 

  49. Maddock, L. Effects of simple environmental feedback on some population models. Tellus 43B, 331–337 (1991).

    ADS  Google Scholar 

  50. Maynard Smith, J. & Szathmary, E. The Major Transitions in Evolution (Freeman, Oxford, (1995).

    Google Scholar 

  51. Hamilton, W. D. Ecology in the large: Gaia and Genghis Khan. J. Appl. Ecol. 32, 451–453 (1995).

    Google Scholar 

  52. Saunders, P. T. Evolution without natural selection: further implications of the Daisyworld parable. J. Theor. Biol. 166, 365–373 (1994).

    CAS  PubMed  Google Scholar 

  53. Keeling, R. in Scientists on Gaia (eds Scheider, S. H. & Boston, P. J.) 118–120 (MIT, London, (1991).

    Google Scholar 

  54. Kirchner, J. W. The Gaia hypothesis: can it be tested? Rev. Geophys. 27, 223–235 (1989).

    ADS  Google Scholar 

  55. Stöcker, S. Regarding mutations in Daisyworld models. J. Theor. Biol. 175, 495–501 (1995).

    Google Scholar 

  56. Von Bloh, W., Block, A. & Schellnhuberr, H. J. Self-stabilization of the biosphere under global change: a tutorial geophysiological approach. Tellus 49B, 249–262 (1997).

    ADS  Google Scholar 

  57. Harding, S. P. & Lovelock, J. E. Exploiter-mediated coexistence and frequency-dependent selection in a numerical model of biodiversity. J. Theor. Biol. 182, 109–116 (1996).

    CAS  PubMed  Google Scholar 

  58. Harding, S. P. The effects of food web complexity on community stability and climate regulation in a geophysiological model. Tellus(submitted).

  59. Oreskes, N., Shrader-Frechette, K. & Belitz, K. Verification, validation, and confirmation of numerical models in the Earth sciences. Science 263, 641–646 (1994).

    ADS  CAS  PubMed  Google Scholar 

  60. Lovelock, J. E. & Kump, L. R. Failure of climate regulation in a geophysiological model. Nature 369, 732–734 (1994).

    ADS  CAS  Google Scholar 

  61. Laland, K. N., Odling-Smeet, F. J. & Feldman, M. W. The evolutionary consequences of niche construction: a theoretical investigation using two-locus theory. J. Evol. Biol. 9, 293–316 (1996).

    Google Scholar 

  62. Patten, B. C. & Odum, E. P. The cybernetic nature of ecosystems. Am. Nat. 118, 886–895 (1981).

    Google Scholar 

  63. Chapin, F. S. II et al. Biotic control over the functioning of ecosystems. Science 277, 500–504 (1997).

    CAS  Google Scholar 

  64. Salati, E. in The Geophysiology of Amazonia: Vegetation and Climate Interactions (ed. Dickinson, R. E.) 273–296 (Wiley, New York, (1987).

    Google Scholar 

  65. Shukla, J., Nobre, C. & Sellers, P. Amazon deforestation and climate change. Science 247, 1322–1325 (1990).

    ADS  CAS  PubMed  Google Scholar 

  66. Bonan, G. B., Pollard, D. & Thompson, S. L. Effects of boreal forest vegetation on global climate. Nature 359, 716–718 (1992).

    ADS  Google Scholar 

  67. Hansen, J., Ruedy, R., Sato, M. & Reynolds, R. Global surface air temperature in 1995: return to pre-Pinatubo level. J. Geophys. Res. 23, 1665–1668 (1996).

    Google Scholar 

  68. Betts, R. A., Cox, P. M., Lee, S. E. & Woodward, F. I. Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387, 796–799 (1997).

    ADS  CAS  Google Scholar 

  69. Gallimore, R. G. & Kutzbach, J. E. Role of orbitally induced changes in tundra area in the onset of glaciation. Nature 381, 503–505 (1996).

    ADS  CAS  Google Scholar 

  70. Foley, J. A., Kutzbach, J. E., Coe, M. T. & Levis, S. Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371, 52–54 (1994).

    ADS  Google Scholar 

  71. Otto-Bliesner, B. L. & Upchurch, G. R. J Vegetation-induced warming of high-latitude regions during the Late Cretaceous period. Nature 385, 804–807 (1997).

    ADS  Google Scholar 

  72. Klinger, L. F. in Scientists on Gaia (eds Schneider, S. H. & Boston, P. J. ) 247–255 (MIT, London, (1991).

    Google Scholar 

  73. Hamilton, W. D. Gaia's benefits. New Sci. 151, 62–63 (1996).

    Google Scholar 

  74. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987).

    ADS  CAS  Google Scholar 

  75. Lovelock, J. E. Ageohysiologist's thoughts on the natural sulphur cycle. Phil. Trans. R. Soc. Lond. B 352, 143–147 (1997).

    ADS  CAS  Google Scholar 

  76. Liss, P. S., Hatton, A. D., Malin, G., Nightingale, P. D. & Turner, S. M. Marine sulphur emissions. Phil. Trans. R. Soc. Lond. B 352, 159–169 (1997).

    ADS  CAS  Google Scholar 

  77. Andreae, M. O. & Crutzen, P. J. Atmospheric aerosols: biogeochemcial sources and role in atmospheric chemistry. Science 276, 1052–1058 (1997).

    CAS  Google Scholar 

  78. Caldeira, K. Evolutionary pressures on planktonic production of atmospheric sulphur. Nature 337, 732–734 (1989).

    ADS  CAS  Google Scholar 

  79. Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).

    ADS  CAS  Google Scholar 

  80. Hamilton, W. D. & Lenton, T. M. Spora and Gaia: how microbes fly with their clouds. Ethol. Ecol. Evol. 10, 1–16 (1998).

    Google Scholar 

  81. Ravishankara, A. R., Rudich, Y., Talukdar, R. & Barone, S. B. Oxidation of atmospheric reduced sulphur compounds: perspective from laboratory studies. Phil. Trans. R. Soc. Lond. B 352, 171–182 (1997).

    ADS  CAS  Google Scholar 

  82. Legrand, M. et al. Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle. Nature 350, 144–146 (1991).

    ADS  CAS  Google Scholar 

  83. Legrand, M. Ice-core records of atmospheric sulphur. Phil Trans. R. Soc. Lond. B 352, 241–250 (1997).

    ADS  CAS  Google Scholar 

  84. Ayers, G. P. & Gras, J. L. Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature 353, 834–835 (1991).

    ADS  CAS  Google Scholar 

  85. Falkowski, P. G. et al. Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic. Science 256, 1311–1313 (1992).

    ADS  CAS  PubMed  Google Scholar 

  86. Roemmich, D. & McGowan, J. Climatic warming and the decline of zooplankton in the California current. Science 267, 1324–1326 (1995).

    ADS  CAS  PubMed  Google Scholar 

  87. Andreae, M. O. in The Role of Air–Sea Exchange in Geochemical Cycling (ed. Buat-Menard, P.) 331–362 (Reidel, Dordrecht, (1986).

    Google Scholar 

  88. Turner, S. M., Malin, G., Liss, P. S., Harbour, D. S. & Holligan, P. M. The seasonal variation of dimethyl sulphide and dimethylsulfonioproprionate concentrations in nearshore waters. Limnol. Oceanogr. 33, 364–375 (1988).

    ADS  CAS  Google Scholar 

  89. Gage, D. A. et al. Anew route for synthesis of dimethylsulphoniopropionate in marine algae. Nature 387, 891–894 (1997).

    ADS  CAS  PubMed  Google Scholar 

  90. Liss, P. S. & Galloway, J. N. in Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds Wollast, R., Mackenzie, F. T. & Chou, L.) 259–281 (Springer, Berlin, (1993).

    Google Scholar 

  91. Eisele, F. L. & McMurray, P. H. Recent progress in understanding particle nucleation and growth. Phil. Trans. R. Soc. Lond. B 352, 191–201 (1997).

    ADS  CAS  Google Scholar 

  92. Watson, A. J. in Gaia in Action, Science of the Living Earth (ed. Bunyard, P.) 65–74 (Floris, Edinburgh, (1996).

    Google Scholar 

  93. Wayne, R. P. Chemistry of Atmospheres 2nd edn (Oxford Univ. Press, (1991).

    Google Scholar 

  94. Mackenzie, F. T., Ver, L. M., Sabine, C., Lane, M. & Lerman, A. in Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds Wollast, R., Mackenzie, F. T. & Chou, L.) 1–61 (Springer, Berlin, (1993).

    Google Scholar 

  95. Brasseur, G. P. & Chatfield, R. B. in Trace Gas Emission from Plants (eds Sharkey, T. D., Holland, E. A. & Mooney, H. A.) 1–27 (Academic, San Diego, (1991).

    Google Scholar 

  96. Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley, New York, (1978).

    Google Scholar 

  97. Jackson, T. A. & Keller, W. D. Acomparitive study of the role of lichens and “inorganic” processes in the chemical weathering of recent Hawaiian lava flows. Am. J. Sci. 269, 446–466 (1970).

    ADS  CAS  Google Scholar 

  98. Kasting, J. F., Whitmore, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).

    ADS  CAS  PubMed  Google Scholar 

  99. Lotka, A. Elements of Mathematical Biology (Dover, New York, (1956).

    MATH  Google Scholar 

Download references

Acknowledgements

I thank J. E. Lovelock and S. J. Lovelock for inspiration and support; J. E. Lovelock for earlier versions of the rock-weathering and mutating Daisyworld models; J. Maynard Smith and W. D. Hamilton for encouragement; J. R. Lenton, M. Whitfield, A. J. Watson, S. P. Harding, S. M. Turner, P. S. Liss, T. Tyrrell, C. Barlow and T. Volk for comments on the manuscript; UEA for a research studentship; the Gaia Charity for additional funding; and Plymouth Marine Laboratory for providing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Lenton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenton, T. Gaia and natural selection. Nature 394, 439–447 (1998). https://doi.org/10.1038/28792

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/28792

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing