Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cytosolic calcium ion activity in epithelial cells of Necturus kidney


Calcium ions are believed to play an important role in the control of cellular function1, and have recently been implicated in the regulation of sodium and water transport in epithelia2–8. In epithelial cells, as in excitable cells1, low cytosolic free calcium levels may be maintained, in part, by a process of Na–Ca exchange across the plasma membrane5,8–12. In a recent model of transepithelial sodium transport in which a regulatory role for calcium ions was incorporated, it was assumed that cytosolic calcium ion activity of epithelial cells is similar to that of excitable cells13. However, no direct measurements of cytosolic calcium ion activity in epithelial cells in normal transporting conditions have yet been made. We report here the direct measurement with Ca2+-selective microelectrodes of cytosolic calcium ion activity in proximal tubular cells of Necturus kidney. The results indicate that cytosolic calcium ion activity in these cells is 10−7 M, and are consistent with the view that a Na–Ca exchange system, located at the basolateral cell membrane, plays a role in maintenance of low cytosolic calcium ion activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Scarpa, A. & Carafoli, E., (eds) Ann. N. Y. Acad. Sci. 307, 1–655 (1978).

  2. Taylor, A. Fedn Proc. 34, 285 (1975).

    Google Scholar 

  3. Wiesmann, W., Sinha, S. & Klahr, S. J. clin. Invest. 59, 418–425 (1977).

    Article  CAS  Google Scholar 

  4. Ludens, J. H. J. Pharmac. exp. Ther. 206, 414–422 (1978).

    CAS  Google Scholar 

  5. Grinstein, S. & Erlij, D. Proc. R. Soc. B202, 353–360 (1978).

    ADS  CAS  Google Scholar 

  6. Nielsen, R. J. Membrane Biol. 40, 331–345 (1978).

    Article  CAS  Google Scholar 

  7. Balaban, R. S. & Mandel, L. J. Biochim. biophys. Acta 555, 1–12 (1979).

    Article  CAS  Google Scholar 

  8. Figueiredo, J. F., Maack, T., Friedmann & Windhager, E. E. Proc. 7th int. Congr. Nephrol. Montreal, C–11(1978).

    Google Scholar 

  9. Blaustein, M. P. Rev. physiol. biochem. Pharmac. 70, 33–82 (1974).

    Article  CAS  Google Scholar 

  10. Ullrich, K. J., Rumrich, G. & Klöss, S. Pflügers Arch. ges. Physiol. 364, 223–228 (1976).

    Article  CAS  Google Scholar 

  11. Gmaj, O., Murer, H. & Kinne, K. Biochem. J. 178, 549–557 (1979).

    Article  CAS  Google Scholar 

  12. Taylor, A., Eich, E. & Pearl, M. Proc. 27th int. Congr. physiol. Sci., Paris 745 (1977).

  13. Taylor, A. & Windhager, E. E. Am. J. Physiol. 236, (6) F505–F512 (1979).

    CAS  PubMed  Google Scholar 

  14. Giebisch, G. J. gen. Physiol. 44, 659–678 (1961).

    Article  CAS  Google Scholar 

  15. Boulpaep, E. L. in Symp. Medical Hoechst. Electrophysiology of Epithelial Cells (ed. Giebisch, G.) 31–118 (Schattauer, New York, 1970).

    Google Scholar 

  16. Windhager, E. E. Micropuncture Techniques and Nephron Function 90–92, 122 (Butterworths, London, 1968).

    Google Scholar 

  17. Boulpaep, L. E. A. Rev. Physiol 38, 20–36 (1976).

    Article  Google Scholar 

  18. Brown, H. H., Pemberton, J. P. & Owen, J. D. Analyt. chim. Acta 85, 261–276 (1976).

    Article  CAS  Google Scholar 

  19. Christoffersen, G. R. J. & Simonsen, L. Acta physiol. scand. 101, 492–494 (1977).

    Article  CAS  Google Scholar 

  20. Ashley, C. C., Rink, T. J. & Tsien, R. Y. J. Physiol., Lond. 280, 27P (1978).

    CAS  PubMed  Google Scholar 

  21. Simon, W., Ammann, D., Oehme, M. & Morf, W. E. Ann. N.Y. Acad. Sci. 307, 52–70 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Sokol, H. H., Lee, C. O. & Lupo, F. J. Biophys. J. 25, 143a (1979).

    Google Scholar 

  23. Spring, K. R. & Kimura, G. Fedn Proc. 38, 2729–2732 (1979).

    CAS  Google Scholar 

  24. Rink, T. J., Tsien, R. Y. & Warner, A. E. Nature 283, 658–660 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Berry, C. A. & Boulpaep, E. L. Am. J. Physiol. 228, 581–595 (1975).

    CAS  PubMed  Google Scholar 

  26. Friedman, P.A., Figueiredo, J. F., Maack, T. & Windhager, E. E. Fedn Proc. 38, 1241 (1979).

    Google Scholar 

  27. Taylor, A., Eich, E., Pearl, M. & Brem, A. in Hormonal Control of Epithelial Transport 167–174, (INSERM, Paris, 1979).

    Google Scholar 

  28. Buttler, J. N. in Ionic Equilibrium, A Mathematical Approach, 428–468 (Addison-Wesley, Reading, Massachusetts, 1964).

    Google Scholar 

  29. Moore, E. W. & I., Ross, J. W. J. appl. Physiol. 20, 1332–1336 (1965).

    Article  CAS  Google Scholar 

  30. Schonhorn, H. & Gregor, H. P. J. Am. chem. Soc. 83, 3576–3579 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, C., Taylor, A. & Windhager, E. Cytosolic calcium ion activity in epithelial cells of Necturus kidney. Nature 287, 859–861 (1980).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing