Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disruption of optic fibre growth following eye rotation in Xenopus laevis embryos

Abstract

Eye rotation is an experimental paradigm used to study axial specification of the amphibian retina and its connections to the tectum1–4. Jacobson reported4 that the naso-temporal and dorso-ventral axes are determined sequentially and independently between Nieuwkoop–Faber (NF)5 stages 28 and 32 in Xenopus. Others claim, however, that both retinal axes are determined much earlier and not independently in Xenopus and Rana6–8. We now find that in Xenopus this operation can disturb the exit of optic fibres from the retina with the severity of disruption depending on the time of surgery. Eyes rotated 180° at NF stage 26–27, before any fibres develop, form aberrant retinal fascicle patterns in which the first optic fibres to differentiate (pioneer fibres), failing to exit from the eye, are deflected into circling instead of radial trajectories. Optic fibres appearing later follow these early misguided axons, creating circular bundles. Eyes rotated later (NF 32–34), after optic fibres differentiate, develop normal but inverted patterns because radial fascicles in the retina at the time of operation accurately guide all newly arising fibres to the optic nerve head. This stage-dependent sensitivity of retinal fascicle development must be considered when interpreting the results of rotation experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sperry, R. W. J. Neurophysiol. 7, 57–70 (1944).

    Article  Google Scholar 

  2. Sperry, R. W. J. Neurophysiol. 8, 15–28 (1945).

    Article  Google Scholar 

  3. Székely, G. Acta biol. hung. 5, 157–167 (1954).

    Google Scholar 

  4. Jacobson, M. Devl Biol. 17, 202–218 (1968).

    Article  CAS  Google Scholar 

  5. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North-Holland, Amsterdam, 1956).

    Google Scholar 

  6. Sharma, S. C. & Hollyfield, J. G. J. camp. Neurol. 155, 395–408 (1974).

    Article  CAS  Google Scholar 

  7. Gaze, R. M., Feldman, J. D., Cooke, J. & Chung, S. H. J. Embryol exp. Morph. 53, 39–66 (1979).

    CAS  PubMed  Google Scholar 

  8. Sharma, S. C., Hollyfield, J. G. J. Embryol exp. Morph. 55, 77–92 (1980).

    CAS  PubMed  Google Scholar 

  9. Shumway, W. Anat. Rec. 78, 139–148 (1940).

    Article  Google Scholar 

  10. Fisher, S. & Jacobson, M. Z. Zellforsch. mikrosk. Anat. 104, 165–177 (1970).

    Article  CAS  Google Scholar 

  11. Grillo, M. A. & Rosenbluth, J. J. comp. Neurol 145, 131–140 (1972).

    Article  CAS  Google Scholar 

  12. Grant, P. & Rubin, E. J. comp. Neurol. 189, 671–698 (1980).

    Article  CAS  Google Scholar 

  13. Grant, P., Rubin, E. & Cima, C. J. comp. Neurol. 189, 593–613 (1980).

    Article  CAS  Google Scholar 

  14. Cima, C. & Grant, P. Devl Biol. 76, 229–237 (1980).

    Article  CAS  Google Scholar 

  15. Murray, M. J. comp. Neurol. 168, 175–196 (1976).

    Article  CAS  Google Scholar 

  16. Rubin, E., Ma, P. M. & Grant, P. (in preparation).

  17. Goldberg, S. & Coulombre, A. J. J. comp. Neurol. 146, 507–518 (1972).

    Article  CAS  Google Scholar 

  18. Goldberg, S. Devl Biol. 36, 24–43 (1974).

    Article  CAS  Google Scholar 

  19. Goldberg, S. J. comp. Neurol. 168, 379–392 (1976).

    Article  CAS  Google Scholar 

  20. Rowell, C. H. F. Q. Jl microsc. Sci. 104, 81–87 (1963).

    Google Scholar 

  21. Wigglesworth, V. B. Q. Jl microsc. Sci. 94, 93–112 (1952).

    Google Scholar 

  22. Grant, P. & Ma, P. M. Soc. Neurosci Abstr. 5, 161 (1979).

    Google Scholar 

  23. Horder, T. J. & Martin, K. A. C. Symp. Soc. exp. Biol. 32, 275–258 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, P., Rubin, E. Disruption of optic fibre growth following eye rotation in Xenopus laevis embryos. Nature 287, 845–848 (1980). https://doi.org/10.1038/287845a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/287845a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing