Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Palaeoceanographic change in the Pacific at the Eocene–Oligocene boundary

Abstract

Oxygen isotopic studies both of benthic formanifera1–5 and shallow-marine carbonates6–8 have provided a useful monitor of marine palaeotemperatures. The Deep Sea Drilling Project (DSDP) has provided cores from many ocean basins to conduct detailed stable isotopic and palaeoceanographic studies of the Cenozoic and late Mesozoic. DSDP Sites 277 and 292, separated by 60° latitude in Palaeogene times, each record an 18O enrichment in benthic foraminifera of nearly 1‰ beginning at the Eocene–Oligocene boundary. Planktonic foraminiferal trends are similar to benthic trends in the high latitude southwest Pacific Ocean, but tropical planktonics show only a minor (0.3‰) increase which may reflect a change in seawater composition. These results suggest a sudden cooling of Pacific deep waters and high latitude surface waters forms a useful stratigraphic marker for the Eocene–Oligocene boundary. This boundary is particularly important because of its association with several worldwide palaeo-oceanographic and biogeographic changes. These include a sudden drop in the calcite compensation depth of 1–2 km (refs 9, 10); a decrease in planktonic microfossil diversity11–13; a change in planktonic biogeographic patterns12–14; and increased erosion of deep-sea sediments over wide areas15,16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Emiliani, C. Science 119, 853–855 (1954).

    Article  ADS  CAS  Google Scholar 

  2. Savin, S. M., Douglas, R. G. & Stehli, F. G. Bull. geol. Soc. Am. 86, 1499–1510 (1975).

    Article  Google Scholar 

  3. Shackleton, N. J. & Kennett, J. P. Init. Rep. DSDP Leg 29, 743–755 (1975).

    CAS  Google Scholar 

  4. Kennett, J. P. & Shackleton, N. J. Nature 260, 513–515 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Savin, S. M. A. Rev. Earth planet. Sci. 5, 319–355 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Dorman, F. H. J. Geol. 74, 49–61 (1966).

    Article  ADS  Google Scholar 

  7. Devereux, I. N.Z. J. Sci. 10, 988–1011 (1967).

    CAS  Google Scholar 

  8. Buchardt, B. Nature 275, 121–123 (1978).

    Article  ADS  CAS  Google Scholar 

  9. van Andel, T. H., Heath, G. R. & Moore, T. C. Jr Geol. Soc. Am. Mem. 143, 134 (1975).

    Google Scholar 

  10. van Andel, T. H. Earth planet. Sci. Lett. 26, 187–194 (1975).

    Article  ADS  Google Scholar 

  11. Lipps, J. H. Evolution 24, 1–22 (1969).

    Article  Google Scholar 

  12. Kennett, J. P. Mar. Micropaleont. 3, 301–345 (1978).

    Article  ADS  Google Scholar 

  13. Sancetta, C. Mar. Micropaleont. 4, 363–398 (1979).

    Article  ADS  Google Scholar 

  14. Haq, B. U. & Lohmann, G. P. Mar. Micropaleont. 1, 119–194 (1976).

    Article  ADS  Google Scholar 

  15. Kennett, J. P. et al. Nature phys. Sci. 239, 51–55 (1972).

    Article  ADS  Google Scholar 

  16. Moore, T. C. Jr, et al. Micropaleontology, 24, 113–138 (1978).

    Article  Google Scholar 

  17. Kennett, J. P. et al. Init. Rep. DSDP Leg 29, 1197 (1975).

    Google Scholar 

  18. Molnar, P. et al. Geophys. J.R. astr. Soc. 40, 383–420 (1975).

    Article  ADS  Google Scholar 

  19. Weissel, J. K., Hayes, D. E. & Herron, E. M. Mar. Geol. 25, 231–277 (1977).

    Article  Google Scholar 

  20. Karig, D. E. et al. Init. Rep. -DSDP Leg 31, 927 (1975).

    Google Scholar 

  21. Louden, K. E. Am. geophys. Un. Monogr. 19, 253–267 (1976).

    Google Scholar 

  22. Andrews, J. E. Geology 8, 140–143 (1980).

    Article  ADS  Google Scholar 

  23. Jenkins, D. G. Init. Rep. DSDP Leg 29, 449–467 (1975).

    Google Scholar 

  24. Edwards, A. R. & Perch-Nielsen, K. Init. Rep. DSDP Leg 29, 469–539 (1975).

    Google Scholar 

  25. Ujiie, H. Init. Rep. DSDP Leg 31, 677–691 (1975).

    Google Scholar 

  26. Ellis, C. H. Init. Rep. DSDP Leg 31, 655–676 (1975).

    Google Scholar 

  27. Ling, H. Y. Init. Rep. DSDP Leg 31, 703–761 (1975).

    Google Scholar 

  28. Blow, W. H. Proc. 1st int. Conf. Planktonic Microfossils (eds Bronnimann, P & Renz, H. H.). 199–422 (Brill, Leiden, 1969).

    Google Scholar 

  29. Keigwin, L. D. Jr Earth planet. Sci. Lett. 45, 361–382 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Blattner, P. & Hulston, J. R. Geochim. cosmochim. Acta 42, 59–62 (1978).

    Article  ADS  CAS  Google Scholar 

  31. Duplessy, J. C., Lalou, C. & Vinot, A. C. Science 168, 250–251 (1970).

    Article  ADS  CAS  Google Scholar 

  32. Erez, J. Nature 273, 199–202 (1978).

    Article  ADS  CAS  Google Scholar 

  33. Mercer, J. H. Antarctic Glacial History and World Paleoenvironments (ed. van Zinderen Bakker, E. M.) 73–93 (Balkema, Rotterdam, 1978).

    Google Scholar 

  34. Vail, P. R., Mitchum, R. M. Jr & Thompson, S. III. Seismic Stratigraphy—Applications to Hydrocarbon Exploration (ed. Payton, C. E.) 83–97 (American Association of Petroleum Geologists, Tulsa, 1977).

    Google Scholar 

  35. Boersma, A. & Shackleton, N. Init. Rep. DSDP Leg 41, 957–962 (1978).

    CAS  Google Scholar 

  36. Thierstein, H. R. & Berger, W. H. Nature 276, 461–466 (1978).

    Article  ADS  CAS  Google Scholar 

  37. Douglas, R. G. & Savin, S. M. Init. Rep. DSDP Leg 32, 509–520 (1975).

    CAS  Google Scholar 

  38. Boersma, A. & Shackleton, N. Init. Rep. DSDP Leg 39, 911–924 (1977).

    CAS  Google Scholar 

  39. Vergnaud-Grazzini, C., Pierre, C. & Letolle, R. Oceanol. Acta 1, 381–390 (1978).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keigwin, L. Palaeoceanographic change in the Pacific at the Eocene–Oligocene boundary. Nature 287, 722–725 (1980). https://doi.org/10.1038/287722a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287722a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing