Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frequency sensitivity of the deep-sea climatic record

Abstract

Attempts to explain quasiperiodic glacial/interglacial transitions1 in the Pleistocene 18O deep-sea stratigraphic record have focused on spectral analysis of palaeoclimatic data and comparisons with Milankovitch-type calculations of variations in isolation caused by periodicities of the Earth's orbit around the Sun2–6. Periods close to those of orbital eccentricity (100 kyr), obliquity (41 kyr), and precession (22 kyr) can be identified in deep-sea cores, but their relative strengths are very different from those of solar insolation and other peaks are also present. Mixing of sediment by deposit-feeding infauna significantly perturbs stratigraphic boundaries in deep-ocean sediments7. Although mixing models8–11 have been proposed to describe quantitative effects of bioturbation no formulation of the effect of this process on the spectrum of the climatic record has been presented. Using the signal processing model11, the suppression of recorded climatic variation over the past 700 kyr is estimated. In the frequency range where changes in the Earth's orbital path affect incident solar radiation the results support an appreciably larger role for astronomical ‘forcing’ of climate than previously estimated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Emiliani, C. J. Geol. 63, 538–578 (1955).

    Article  ADS  CAS  Google Scholar 

  2. Kemp, W. C. & Eger, D. T. J. geophys. Res. 72, 739–751 (1967).

    Article  ADS  Google Scholar 

  3. Hays, J. D., Imbrie, J. & Shackleton, N. J. Science 194, 1121–1132 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Rooth, C. G. H., Emiliani, C. & Poor, H. W. Earth planet. Sci. Lett. 41, 387–394 (1978).

    Article  ADS  Google Scholar 

  5. Kominz, M. A. & Pisias, N. G. Science 204, 171–173 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Kominz, M. A., Heath, G. R., Ku, T.-L. & Pisias, N. G. Earth planet. Sci. Lett. 45, 394–410 (1979).

    Article  ADS  CAS  Google Scholar 

  7. McIntyre, A., Bé, A. W. H. & Preikstas, R. Prog. Oceanogr. 4, 3–25 (1967).

    Article  ADS  Google Scholar 

  8. Davis, R. B. Limnol. Oceanogr. 19, 466–488 (1974).

    Article  ADS  Google Scholar 

  9. Berger, W. H. & Heath, G. R. J. mar. Res. 26, 134–143 (1968).

    Google Scholar 

  10. Guinasso, N. L. & Schink, D. R. J. geophys. Res. 80, 3032–3043 (1975).

    Article  ADS  Google Scholar 

  11. Goreau, T. J. Nature 265, 525–526 (1977).

    Article  ADS  Google Scholar 

  12. Emiliani, C., Rooth, C. G. H. & Stipp, J. J. Earth planet. Sci. Lett. 41, 159–162 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Berger, W. H. Nature 269, 301–304 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Berger, W. H. Deep Sea Res. 25, 473–479 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Jenkins, G. M. & Watts, D. G. Spectral Analysis and its Applications (Holden Day, San Francisco, 1968).

    MATH  Google Scholar 

  16. Emiliani, C. Earth planet. Sci. Lett. 37, 349–352 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Evans, D. L. & Freeland, H. J. Science 198, 528–529 (1978).

    ADS  Google Scholar 

  18. Ruddiman, W. F. & Glover, L. K. Bull. geol. Soc. Am. 83, 2817–2836 (1972).

    Article  Google Scholar 

  19. Glass, B. P. Earth planet. Sci. Lett. 6, 409–415 (1972).

    Article  ADS  Google Scholar 

  20. Erez, J. Nature 281, 535–538 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Erez, J. Nature 273, 199–202 (1977).

    Article  ADS  Google Scholar 

  22. Goreau, T. J. Proc. R. Soc. B196, 291–315 (1977).

    ADS  CAS  Google Scholar 

  23. Suarez, M. J. & Held, I. M. J. geophys. Res. 84, 4825–4836 (1979).

    Article  ADS  Google Scholar 

  24. Imbrie, J. & Imbrie, J. Z. Science 207, 943–953 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Hasselman, K. Tellus 28, 473–485 (1976).

    Article  ADS  Google Scholar 

  26. Cathles, L. M. The Viscosity of the Earth's Mantle (Princeton University Press, 1975).

    Google Scholar 

  27. Birchfield, G. E. & Weertman, J. J. geophys. Res. 83, 4123–4125 (1978).

    Article  ADS  Google Scholar 

  28. Emiliani, C. & Geiss, J. Geol. Rdsch. 46, 576–601 (1958).

    Article  Google Scholar 

  29. Ruddiman, W. F. et al. Sedim. Geol. 25, 257–276 (1980).

    Article  ADS  CAS  Google Scholar 

  30. Hutson, W. H. Geology 8, 127–130 (1980).

    Article  ADS  CAS  Google Scholar 

  31. Peng, T.-H., Broecker, W. S. & Berger, W. H. Quat. Res. 11, 141–149 (1979).

    Article  Google Scholar 

  32. Krishnaswami, S., Benninger, L. K., Aller, R. C. & Van Dam, K. L. Earth planet. Sci. Lett. 47, 307–318 (1980).

    Article  ADS  CAS  Google Scholar 

  33. Fisher, J. B., Lick, W. J., McCall, P. L. & Robbins, J. A. J. geophys. Res. 85, 3997–4006 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goreau, T. Frequency sensitivity of the deep-sea climatic record. Nature 287, 620–622 (1980). https://doi.org/10.1038/287620a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287620a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing