Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pharmacological specificity of brain histamine H2-receptors differs in intact cells and cell-free preparations

Abstract

Despite increasing evidence that histamine may be a neuro-transmitter in brain, the functions of putative histaminergic neurones are just beginning to be known1,2. Both H1- and H2-receptors3 seem to be present in brain4–7 and histaminergic neurones might control arousal mechanisms or carbohydrate metabolism, via H1-receptors8–11. The actions mediated by cerebral H2-receptors are less clear mainly because available agonists and antagonists3,12–15 do not cross the ‘blood–brain barrier’. However, on a histamine-sensitive adenylate cyclase from guinea pig brain homogenates with pharmacological properties similar to those of H2-receptors16,17 compounds like tricyclic antidepressants or promethazine were extremely potent antagonists18,19 suggesting that this might represent the molecular basis of clinical antidepressant activity19. Although electrophysiological20 and behavioural21 studies partially confirmed that one of these compounds, amitryptiline, could block cerebral histamine receptors in the living animal, their potency as H2-antihistamines has never been precisely established in intact brain cell preparations. Histamine strongly stimulates cyclic AMP synthesis in brain slices but, in contrast with homogenates, both H1- and H2-receptors are involved4,5,22. As compounds like promethazine are potent H1-antihistamines7,8, we have developed a test specific for H2-receptors consisting of the stimulation of cyclic AMP accumulation by impromidine, a potent and highly selective H2-receptor agonist14, in slices from guinea pig hippocampus and using it find that H2-receptors differ considerably in their drug discriminatory properties from those mediating the stimulation of adenylate cyclase activity in homogenates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schwartz, J. C. A. Rev. Pharmac. Tox. 17, 325–339 (1977).

    Article  CAS  Google Scholar 

  2. Green, J. P., Johnson, C. L. & Weinstein, H. in Psychopharmacology: A Generation of Progress (eds Lipton, M. A., Dimascio, A. & Killam, K. F.) 319–332 (Raven, New York, 1978).

    Google Scholar 

  3. Black, J. W., Duncan, W. A. M., Durant, G. J., Ganellin, C. R. & Parsons, M. E. Nature 236, 385–390 (1972).

    Article  ADS  CAS  Google Scholar 

  4. Baudry, M., Martres, M. P. & Schwartz, J. C. Nature 253, 362–363 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Rogers, M., Dismukes, K. R. & Daly, J. M. J. Neurochem. 25, 531–534 (1975).

    Article  CAS  Google Scholar 

  6. Hill, S. J., Emson, P. C. & Young, J. M. J. Neurochem. 31, 997–1004 (1978).

    Article  CAS  Google Scholar 

  7. Tran, V. T., Chang, R. S. L. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 75, 6290–6294 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Hill, S. J. & Young, J. M. Eur. J. Pharmac. 52, 397–399 (1978).

    Article  CAS  Google Scholar 

  9. Richelson, E. Nature 274, 176–177 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Quach, T. T., Duchemin, A. M., Rose, C. & Schwartz, J. C. Eur. J. Pharmac. 60, 391–392 (1979).

    Article  CAS  Google Scholar 

  11. Quach, T. T., Duchemin, A. M., Rose, C. & Schwartz, J. C. Molec. Pharmac. 17, 301–308 (1980).

    CAS  Google Scholar 

  12. Black, J. W., Durant, G. J., Emmett, J. C. & Ganellin, C. R. Nature 248, 65–67 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Brimblecombe, R. W. et al. J. Int. med. Res. 3, 86–92 (1975).

    Article  CAS  Google Scholar 

  14. Durant, G. J. et al. Nature 276, 403–405 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Parsons, M. E., Owen, D. A. A., Ganellin, C. R. & Durant, G. J. Agents Actions 7, 31–37 (1977).

    Article  CAS  Google Scholar 

  16. Hegstrand, L. R., Kanof, P. D. & Greengard, P. Nature 260, 163–165 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Green, J. P., Johnson, C. L., Weinstein, H. & Maayani, S. Proc. natn. Acad. Sci. U.S.A. 74, 5697–5701 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Green, J. P. & Maayani, S. Nature 269, 163–165 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Kanof, P. D. & Greengard, P. Nature 272, 329–333 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Haas, H. L. Agents Actions 9, 83–84 (1979).

    Article  CAS  Google Scholar 

  21. Nowak, J. Z., Bielkiewicz, B. & Lebrecht, U. Neuropharmacology 18, 783–789 (1979).

    Article  CAS  Google Scholar 

  22. Palacios, J. M., Garbarg, M., Barbin, G. & Schwartz, J. C. Molec. Pharmac. 14, 971–982 (1978).

    CAS  Google Scholar 

  23. Marshall, P. B. Br. J. Pharmac. Chemother. 10, 270–278 (1955).

    Article  CAS  Google Scholar 

  24. Kanof, P. D. & Greengard, P. J. Pharmac. exp. Ther. 209, 87–96 (1979).

    CAS  Google Scholar 

  25. Brimblecombe, R. W., Duncan, W. A. M., Owen, D. A. A. & Parsons, M. E. Fedn Proc. 35, 1931–1934 (1976).

    CAS  Google Scholar 

  26. Batzri, S. & Gardener, molec. Pharmac. 16, 406–416 (1979).

    CAS  Google Scholar 

  27. Rudolph, S. A., Hegstrand, C. R., Greengard, P. & Malawista, S. E. Molec. Pharmac. 16, 805–812 (1979).

    CAS  Google Scholar 

  28. Schwartz, J. C. et al. in Histamine Receptors (ed. Yellin, T. O.) 161–183 (Spectrum, New York, 1979).

    Google Scholar 

  29. Johnson, C. L., Weinstein, H. & Green, J. P. Molec. Pharmac. 16, 417–428 (1979).

    CAS  Google Scholar 

  30. Kanof, P. D. & Greengard, P. Molec. Pharmac. 15, 445–461 (1979).

    CAS  Google Scholar 

  31. Levi, R., Capurro, N. & Lee, C. H. Eur. J. Pharmac. 30, 328–335 (1975).

    Article  CAS  Google Scholar 

  32. Reinhardt, D., Wiemann, H. M. & Schumann, H. J. Agents Actions 6, 683–698 (1976).

    Article  CAS  Google Scholar 

  33. Kanof, P. D., Hegstrand, L. R. & Greengard, P. Archs Biochem. Biophys. 182, 321–334 (1977).

    Article  CAS  Google Scholar 

  34. Childers, S. R. & Snyder, S. H. Life Sci. 23, 759–762 (1978).

    Article  CAS  Google Scholar 

  35. Creese, I., Usdin, T. B. & Snyder, S. H. Molec. Pharmac. 16, 69–76 (1979).

    CAS  Google Scholar 

  36. Wessels, M. R., Mullikin, D. & Lefkowitz, R. J. Molec. Pharmac. 16, 10–20 (1979).

    CAS  Google Scholar 

  37. Saiani, L., Trabucchi, M., Tonon, G. C. & Spano, P. F. Neurosci. Lett. 14, 31–36 (1979).

    Article  CAS  Google Scholar 

  38. Williams, L. T. & Lefkowitz, R. J. Receptor Binding Studies in Adrenergic Pharmacology (Raven, New York, 1978).

    Google Scholar 

  39. Brown, B. L., Albano, J. D. M., Elkins, R. P. & Sgherzi, A. M. Biochem. J. 121, 561–562 (1971).

    Article  CAS  Google Scholar 

  40. Cheng, Y. C. & Prusoff, W. H. Biochem. Pharmac. 22, 3099–3108 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuong, M., Garbarg, M. & Schwartz, J. Pharmacological specificity of brain histamine H2-receptors differs in intact cells and cell-free preparations. Nature 287, 548–551 (1980). https://doi.org/10.1038/287548a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287548a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing