Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lunar asymmetry and palaeomagnetism

Abstract

The compositional asymmetry between the nearside and farside of the Moon and the natural remanent magnetism (NRM) of lunar rocks are poorly understood. The compositional asymmetry is indicated by the 2-km offset towards the Earth of the centre of mass relative to the centre of figure and the concentration of both KREEP and mare basalts on the nearside. Wasson and Warren1 recently noted that these asymmetries may be better explained by an asymmetric crystallization of a primordial magma ocean than by the often proposed2–4 greater thickness of farside anorthositic crust. The NRM5 has been attributed to an ancient lunar dynamo6,7. I propose here a model for the early lunar evolution in which the preferred gravitational energy state consisted of an asymmetric accumulation of a liquid iron alloy (Fe–Ni and a small amount of sulphur) which displaces upwards the cold, primordial, undifferentiated core. The resulting depth asymmetry of the outer partially molten zone leads eventually to the subcrustal accumulation of light, magnesium-rich pyroxenes and olivine, preferentially in one hemisphere, sufficient to explain the offset and also indirectly providing a possible explanation for the nearside concentration of KREEP and mare basalt. Meanwhile, slow downward migration of the iron releases gravitational energy sufficient for convection and dynamo generation in an iron layer for about 109 yr. The proposed present state of the Moon has a symmetrically placed iron core (radius 500 km), unlike a previous model for the lunar asymmetry8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wasson, J. T. & Warren, P. H. Lunar planet. Sci. 11, Abstr., 1220 (1980).

    ADS  Google Scholar 

  2. Wood, J. A. The Moon 8, 73 (1973).

    Article  ADS  Google Scholar 

  3. Kaula, W. M. et al. Proc. 5th Lunar Sci. Conf., 3049 (1974).

  4. Haines, E. L. & Metzger, A. E. Proc. Conf. Lunar Highlands Crust (1980).

  5. Fuller, M. Rev. Geophys. Space Phys. 12, 23 (1974).

    Article  ADS  Google Scholar 

  6. Runcorn, S. K. et al. Proc. R. Soc. A325, 157 (1971).

    Article  ADS  CAS  Google Scholar 

  7. Strangway, D. W., Pearce, G. W., Gose, W. A. & Timme, R. W. Earth planet. Sci. Lett. 13, 43 (1971).

    Article  ADS  Google Scholar 

  8. Ransford, G. & Sjogren, W. Nature 238, 260 (1972).

    Article  ADS  Google Scholar 

  9. Wetherill, G. W. Proc. 8th Lunar Sci. Conf., 1 (1977).

  10. Kaula, W. M. J. geophys. Res. 84, 999 (1979).

    Article  ADS  Google Scholar 

  11. Schubert, G., Stevenson, D. J. & Cassen, P. J. geophys. Res. 85, 2531 (1980).

    Article  ADS  Google Scholar 

  12. Feigenson, M. D. & Spera, F. J. geophys. Res. Lett. 7, 145 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Turcotte, D. L. & Oxburgh, E. R. A. Rev. Fluid Mech. 4, 33 (1972).

    Article  ADS  Google Scholar 

  14. Brett, R. Geochim. cosmochim. Acta 37, 165 (1973).

    Article  ADS  CAS  Google Scholar 

  15. Goldstein, B. E., Phillips, R. J. & Russell, C. T. Proc. 7th Lunar Sci. Conf., 3321 (1976).

  16. Vityazev, A. V. & Mayeva, S. V. Izv. Phys. Solid Earth 12, 79 (1976).

    Google Scholar 

  17. Elsasser, W. M. in Earth Science and Meteoritics (eds Geiss, J. & Goldberg, E.) 1 (North-Holland, Amsterdam, 1963).

    Google Scholar 

  18. Stevenson, D. J. Lunar planet. Sci. 11, Abstr., 1088 (1980).

    ADS  Google Scholar 

  19. Lambeck, K. & Pullan, S. Phys. Earth planet. Interiors 22, 12 (1980).

    Article  ADS  Google Scholar 

  20. Warren, P. H. & Wasson, J. T. Proc. 10th Lunar Sci. Conf., 2051 (1979).

  21. Booker, J. R. J. Fluid Mech. 76, 741 (1976).

    Article  ADS  Google Scholar 

  22. Ramberg, H. Phys. Earth planet. Interiors 1, 63 (1968).

    Article  ADS  Google Scholar 

  23. Warren, P. H. & Wasson, J. T. Rev. Geophys. Space Phys. 17, 73 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Shaw, G. H. Phys. Earth planet. Interiors 20, 42 (1979).

    Article  ADS  Google Scholar 

  25. Clayton, D. D. in Principles of Stellar Evolution and Nucleosynthesis, 257 (McGraw-Hill, New York).

  26. Stevenson, D. J. Icarus 22, 402 (1974).

    Article  ADS  Google Scholar 

  27. Gubbins, D. & Masters, T. G. Adv. Geophys. 21, 1 (1979).

    Article  ADS  Google Scholar 

  28. Runcorn, S. K. Science 199, 771 (1978).

    Article  ADS  CAS  Google Scholar 

  29. Daily, W. D. & Dyal, P. Phys. Earth planet. Int. 20, 255 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, D. Lunar asymmetry and palaeomagnetism. Nature 287, 520–521 (1980). https://doi.org/10.1038/287520a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287520a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing