Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nuclear accumulation of epidermal growth factor in cultured rat pituitary cells

Abstract

Epidermal growth factor (EGF) is a mitogen for epidermal cells in vivo1,2 and for a wide variety of cells in culture3–5. Recently, we and others have reported that EGF can also regulate the cellular levels of various hormones6 and fibronectin7 at concentrations which only minimally influence cell division. In addition, EGF treatment of GH3 cells affects chromatin structure such that isolated nuclei from treated cells have an increased capacity to bind bacterial RNA polymerase in initiation site complexes6. Thus, the data suggest that various nuclear functions are modulated by EGF in GH3 cells despite its failure to affect DNA synthesis or cell proliferation. Recently, Yanker and Shooter8 have reported on the nuclear accumulation of nerve growth factor (NGF) in PC12 cells in which NGF does not promote cell division but does influence RNA and protein synthesis while inducing overt differentiation (neurite outgrowth). The similarities between the two systems and the various theories regarding the mechanism by which mitogens exert their growth-promoting and other effects9,10 led us to investigate whether an interaction between EGF and the cell nucleus can be demonstrated after surface binding and internalization of EGF in GH3 cells. We report here that when its lysosomal degradation is inhibited by chloroquine, EGF accumulates in the nucleus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Birnbaum, J. E., Sapp, T. M. & Moore, J. B. J. invest. Derm. 66, 313–318 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Savage, C. R. & Cohen, S. Expl Eye Res. 15, 361–366 (1973).

    Article  CAS  Google Scholar 

  3. Rheinwald, J. G. & Green, H. Nature 265, 421–242 (1977).

    Article  Google Scholar 

  4. Gospodarowicz, D., Ill, C. R. & Birdwell, C. R. Endocrinology 100, 1108–1115 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Savage, C. R. & Cohen, S. J. biol. Chem. 247, 7609–7611 (1972).

    CAS  PubMed  Google Scholar 

  6. Johnson, L. K., Baxter, J. D., Vlodavsky, I. & Gospodarowicz, D. Proc. natn. Acad. Sci. U.S.A. 77, 394–398 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Chen, L. B., Guoor, R. C., Sun, T. T., Chen, A. B. & Mosesson, M. W. Science 197, 776–778 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Yanker, B. A. & Shooter, E. M. Proc. natn. Acad. Sci. U.S.A. 76, 1269–1273 (1979).

    Article  ADS  Google Scholar 

  9. Carpenter, G. & Cohen, S. A. Rev. Biochem. 48, 193–226 (1979).

    Article  CAS  Google Scholar 

  10. Das, M. & Fox, F. C. Proc. natn. Acad. Sci. U.S.A. 75, 2644–2648 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Carpenter, G., Lembach, K., Morrison, M. & Cohen, S. J. biol. Chem. 250, 4297–4304 (1975).

    CAS  PubMed  Google Scholar 

  12. Carpenter, G. & Cohen, S. J. Cell Biol. 71, 159–171 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. Brandenberger, H. & Hanson, R. Helv. chim. Acta 36, 900–904 (1953).

    Article  CAS  Google Scholar 

  14. Jackson, P. C. Biochemistry 15, 5641–5651 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Adolph, K. W., Chang, S. M. & Laemmli, U. K. Cell 12, 805–812 (1977).

    Article  CAS  PubMed  Google Scholar 

  16. Laemmli, U. K. et al. Cold Spring Harb. Symp. quant. Biol. 42, 351–360 (1977).

    Article  Google Scholar 

  17. Levy, B. W. & Baxter, J. D. Biochem. biophys. Res. Commun. 68, 1045–1051 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Charles, M. A., Ryffel, G. W., Obinata, M., McCarthy, B. J. & Baxter, J. D. Proc. natn. Acad. Sci. U.S.A. 72, 1787–1791 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Samuels, H. H., Stanley, F. & Shapiro, L. J. biol. Chem. 252, 6052–6060 (1977).

    CAS  PubMed  Google Scholar 

  20. Goidl, J. A. Biochemistry 18, 3674–3678 (1979).

    Article  CAS  PubMed  Google Scholar 

  21. Haigier, H., Ash, J. F., Singer, S. J. & Cohen, S. Proc. natn. Acad. Sci. U.S.A. 75, 3317–3321 (1978).

    Article  ADS  Google Scholar 

  22. Szego, C. J. Recent Prog. Horm. Res. 30, 171–233 (1974).

    CAS  PubMed  Google Scholar 

  23. Savion, N., Vlodavsky, I. & Gospodarowicz, D. Proc. natn. Acad. Sci. U.S.A. 77, 1466–1470 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, L., Vlodavsky, I., Baxter, J. et al. Nuclear accumulation of epidermal growth factor in cultured rat pituitary cells. Nature 287, 340–343 (1980). https://doi.org/10.1038/287340a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287340a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing