Letter | Published:

Biophotolytic H2 production using alginate-immobilized chloroplasts, enzymes and synthetic catalysts

Naturevolume 287pages251253 (1980) | Download Citation

Subjects

Abstract

Hydrogen can be produced by illumination of an aqueous mixture of chloroplasts and hydrogenase, in the presence of an electron carrier1,2. This system may have potential for development of a solar converter to produce hydrogen from water3,4 if it can be stabilized or constructed as a completely synthetic system. The immobilization of the chloroplasts, or membrane analogues, would make possible a one-stage reactor with all the components in one chamber, or a two-stage reactor if the electron carrier was passed to another chamber to react with an immobilized hydrogen-producing catalyst. However, techniques for immobilizing enzymes tend to yield immobilized chloroplasts that are not very active, and other methods must be used5–8 . We describe here the immobilization of chloroplasts using calcium alginate gels on reinforcing grids of nylon and stainless steel. Chloroplasts thus immobilized are fully active and can be used to produce hydrogen gas. Strengthened films of this sort could provide a good, solid, rigid matrix for a solar converter.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Rao, K. K. & Hall, D. O. Photosynthesis in Relation to Model Systems (ed. Barber, J.) 299–329 (Elsevier, Amsterdam, 1979).

  2. 2

    Weaver, P. F., Lien, S. & Seibert, M. Solar Energy 24, 3–45 (1980).

  3. 3

    Porter, G. & Archer, M. D. Interdisc. Sci. Rev. 1, 119–143 (1976).

  4. 4

    Bolton, J. & Hall, D. O. A. Rev. Energy 4, 353–401 (1979).

  5. 5

    Keirstan, M. & Bucke, C. Biotech. Bioengng 19, 387–397 (1977).

  6. 6

    Ochiai, H., Shibita, H., Fujishima, A. & Honda, K. Agric. biol. Chem. 43, 881–883 (1979).

  7. 7

    Cocquempot, M. D., Thomas, D., Champigny, M. L. & Moyse, A. Eur. J. appl. Microbiol. Biotech. 8, 37–42 (1979).

  8. 8

    Rao, K. K. et al. Proc. int. Symp. Biological Applications of Solar Energy (eds Gnanam, A., Krishnaswamy, S. & Kahn, J. S.) 199–204 (Macmillan, India, 1980).

  9. 9

    Cheetham, P. S. J., Blunt, K. W. & Bucke, C. Biotech. Bioengng 21, 2155–2168 (1979).

  10. 10

    Kiwi, J. & Gratzel, M. Am. chem. Soc. J. 101–24, 7214–7217 (1979).

  11. 11

    Ochiai, H., Shibata, H., Sawa, Y. & Katoh, T. Proc. natn. Acad. Sci. U.S.A. 77, 2442–2444 (1980).

  12. 12

    Kaneko, M., Motoyoshi, J. & Yamada, A. Nature 285, 468–470 (1980).

  13. 13

    Lilley, R. McC. & Walker, D. A. Biochim. biophys. Acta 368, 269–278 (1974).

  14. 14

    Reeves, S. G. & Hall, D. O. Biochim. biophys. Acta 314, 66–78 (1973).

  15. 15

    Hall, D. O. Nature new Biol. 235, 125–126 (1972).

  16. 16

    Rao, K. K., Rosa, L. & Hall, D. O. Biochem. biophys. Res. Comm 68, 21–27 (1976).

Download references

Author information

Affiliations

  1. Department of Plant Sciences, University of London King's College, 68 Half Moon Lane, London, SE24 9JF, UK

    • P. E. Gisby
    •  & D. O. Hall

Authors

  1. Search for P. E. Gisby in:

  2. Search for D. O. Hall in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/287251a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.